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Magnetic resonance imaging (MRI) has become the modality of choice for neuro-
anatomical imaging. Quantitative analysis requires the accurate and reproducible la-
beling of all voxels in any given structure within the brain. Since manual labeling is
prohibitively time-consuming and error-prone we have designed an automated proce-
dure called ANIMAL (Automatic Nonlinear Image Matching and Anatomical Labeling)
to objectively segment gross anatomical structures from 3D MRIs of normal brains. The
procedure is based on nonlinear registration with a previously labeled target brain, fol-
lowed by numerical inverse transformation of the labels to the native MRI space. Besides
segmentation, ANIMAL has been applied to non-rigid registration and to the analysis
of morphometric variability.

In this paper, the nonlinear registration approach is validated on five test volumes,
produced with simulated deformations. Experiments show that the ANIMAL recovers
64% of the nonlinear residual variability remaining after linear registration. Segmenta-
tions of the same test data are presented as well.

The paper concludes with two applications of ANIMAL using real data. In the first,
one MRI volume is nonlinearly matched to a second and is automatically segmented using
labels, predefined on the second MRI volume. The automatic segmentation compares
well with manual labeling of the same structures. In the second application, ANIMAL is
applied to seventeen MRI data sets, and a 3D map of anatomical variability estimates is
produced. The automatic variability estimates correlate well (r = 0.867, p = 0.01) with
manual estimates of inter-subject variability.

Keywords: Nonlinear deformation, warping, segmentation, variability analysis, human
brain, MRI.

1. INTRODUCTION

Our interest in cerebral morphological variability stems from the work done in
functional brain mapping at our institute.

In PET-based (positron emission tomography) cognitive activation paradigms,
cerebral functional activity can be measured using a so-called subtraction paradigm.
Here, two imaging experiments are completed; one during a resting state, and the
second during some task requiring cognitive activity. The task can be as simple as
tapping the right index finger or as complex as deciding on the ending consonant of
monosyllabic words. The first image is subtracted from the second and the result
indicates the regions activated by the particular task.

For some experiments, the signal difference between the active and the resting
states is very subtle and averaging must be used to increase the signal to noise
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ratio. Dose limitations prevent repeating PET studies more than a small number
of times in a single subject, so the averages must be computed using multiple
subjects.! Spatial registration between subjects is required for averaging, in order
to align corresponding voxels, and is often achieved by mapping each brain volume
into a standardized, or stereotaxic, coordinate space.? The use of some variant of the
Talairach space? is almost universal, since it is based on easily identified anatomical
landmarks, and accounts for orientation, position and scale.

While this procedure has been successfully applied in many studies, its limi-
tations are now becoming apparent. Even after linear registration, there remains
a considerable amount of anatomical variability unaccounted for. This residual
misregistration is most notable for cortical structures (those on the periphery of
the brain), which are also of interest in the analysis for cognitive processing. This
misregistration is evident in the form of structure blurring when averaging images.

For example, the availability of a large MRI database of normal volunteers,
acquired as part of an on-going brain mapping programme at the Montreal Neu-
rological Institute (MNI), has lead to the construction of a 3-D probabilistic atlas
of young, normal gross neuroanatomy, defined within stereotaxic space.*® The av-
erage stereotaxic MRI volume shown in Fig. 1 was derived from 305 young normal
individuals (239 males; 66 females; mean age 23.4 + 4.1) after stereotaxic transfor-
mation of each MRI volume and intensity normalization. The blurring evident in
Fig. 1 is a qualitative indicator of the local anatomical variability.

LR UK UK

Fig. 1. Mean MRI dataset drawn from 305 young normal volunteers. The dataset is used as an
anatomical template for locating functional activation data in Talairach space while respecting
the known anatomical variability among individuals following linear stereotaxic transformation.
It provides a visual impression of local anatomical variability and an indication of how well a
particular functional measurement can be localized.
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Unfortunately, the average stereotaxic MRI volume is insufficient for quantita-
tive estimation of variability. For this purpose, the MRI intensity for each voxel
in each MRI volume must be replaced by an anatomical label, e.g. caudate, pre-
central gyrus or calcarine sulcus, and a probability assigned for each voxel having
a particular label. This requires a precise segmentation of each MRI volume into
component structures, features and tissue types. However, manual labeling, in ad-
dition to being prohibitively time-consuming, introduces intra- and inter-observer
inconsistencies in segmentation which can become comparable in magnitude to the
true anatomical differences which are to be measured, confounding the overall goal.
Our goal is to develop a method for completely automatic and accurate brain image
segmentation at the regional level in order to remove these sources of error.

While averaging of labeled structures yields a probabilistic estimate for anatom-
ical variability on a gross structural level, it does not give a measure for individual
coordinates in terms of distance from some mean position. In the work completed
by Sortie et al.,® 34 landmarks were identified on 17 brain volumes by 5 anatomists.
Analysis of variability permitted the estimation of an inter-subject variability mea-
sure for each point, separated from intra-observer and inter-observer variabilities.
The only difficulty with this work is that the measures of landmark variabilities
are valid only for the landmarks chosen. Our goal is to develop a method that will
permit the estimation of a dense field of variability estimates.

In this paper we describe the evolution of our work towards the two goals identi-
fied above, namely (1) automatic segmentation and (2) dense estimates of anatom-
ical variability.

We have developed a nonlinear registration procedure known as ANIMAL (Au-
tomated Nonlinear Image Matching and Anatomical Labeling). In order to register
a single subject to a given target, ANIMAL builds a 3-D nonlinear deformation field
by sequentially stepping through the target volume in a 3-D grid pattern, estimating
the displacement vector required to achieve local registration of the blurred gradient
magnitude data extracted from each volume. The algorithm is applied iteratively
in a multi-scale hierarchy, so that image blurring and grid size are reduced after
each iteration, thus refining the fit. The recovered deformation field can then be
used to resample the subject in the target space, or vice-versa, for direct voxel-to-
voxel comparisons. Automatic gross structure segmentation is achieved by mapping
labels, previously identified on the target model volume, through the deformation
field, onto the subject’s data volume. Since the anatomy is registered, the labels are
essentially registered onto their corresponding structures to achieve segmentation.
Estimates of variability for individual landmarks are derived from analysis of the
recovered deformation.

This paper begins by describing similar work in the field of nonlinear registration,
and follows by a detailed description of the ANIMAL procedure and the registra-
tion strategy. Experiments on automatic segmentation and analysis of anatomical
variability are presented and validated using manual estimates. This paper ends
with a discussion of the technique and presents directions for future work.
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2. PREVIOUS WORK

Nonlinear registration is based on the assumption that there exists a topological
equivalence between any two brain volumes. It is assumed that a continuous spatial
transformation exists that can bring the two data sets into registration. (In the
descriptions below, we will use the terms source and target to describe the first
volume that is deformed onto the second, respectively.)

A number of groups have addressed this problem, and all the procedures de-
veloped involve (explicitly or implicitly) the identification of features, a measure
of similarity based on these features and a method to define the nonlinear spatial
transformation function. Here, some of the existing methods are grouped by the
type of features used in the matching process: 0-D (points), 1-D (lines or curves),
2-D (surfaces) or 3-D (volumetric).

2.1. 0-D — Point Based Registration

Point-based registration requires the identification of homologous landmarks. Since
the landmarks need not be organized on a regular grid, an interpolant for scattered
data is required to define a continuous 3-D transformation function. The so called
thin-plate-spline has been used in 2-D,” and 3-D,® to interpolate between manually
identified landmarks to register brain volumes.

2.2. 1-D — Curve Based Registration

Curves have been used to increase the constraints used in the matching process. Ge
et al.? subsampled manually extracted sulci and used the points to drive a thin-plate
spline interpolant. Luo!® also used manually identified sulci, but used a hierarchical
force-based deformation approach to estimate the nonlinear transformation that
best matches the sulci. Automatically extracted curves representing crest-lines of
the ventricles are matched using an iterative closest point method by Subsol.!!

2.3. 2-D — Surface Based Registration

Surface-based registration procedures require the extraction of homologous surfaces
between the two volumes. The techniques differ in the way the surface is extracted
and the way it is used to define the nonlinear transformation.

Downs et al.1213 define a pseudo-convex hull around the cortical surface. After
linear alignment of the two data sets, radial interpolation is used to register the
convex hull of the source volume on the target. While this type of method corrects
for global shape differences between brains, it does not necessarily align gyri and
sulci on the cortical surface. v

Thompson et al.}* have addressed this problem, where connected systems of
parametric meshes are constructed within each brain to model major functional
and lobar boundaries. Afterwards, the surface elements are warped onto the model
brain using fluid dynamics to model the deformation process and extracted sulci
are used as constraints to improve alignment of cortical structures.
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Sandor et al.!® also used cortical constraints to ensure registration of major
cortical sulci. Morphological operators were used to identify sulci and gyri on an
extracted cortical surface. Correspondence was achieved using a distance transform-
that was used to match nearest sulci together. ‘

2.4. 3-D — Volume Based Registration

The techniques described above can be considered to be “label-based”. These meth-
ods begin with explicit correspondence, achieved by the identification of homologous
spatial structures. The 3-D nonlinear transformation is then computed that best
superposes the extracted features. One problem with these methods resides in the
choice of which features to use, how many to use and the subjective error when
manually identifying equivalent landmarks in different brains. In previous work,®
we have shown this uncertainty is on the order of 5-10 mm for point-based land-
marks, similar to the extent of true anatomic variability that we wish to correct by
using nonlinear registration. Another problem with these techniques is the choice of
interpolant, since the deformation is estimated only at limited positions throughout
the volume, the interpolant selected greatly affects the registration of the structures
falling in between those used to calculate the transformation.

In the techniques described below, explicit correspondence is not available. It
is derived by maximizing some indirect measure of similarity between the two vol-
umes by optimization of the parameters driving the transformation. However, since
data from the entire volume is used, the distance between the extracted features is
much less than in the label-based methods above (usually on the order of the voxel

spacing) and the choice of the interpolant becomes less important.

One of the first methods described in the literature is due to Broit et al.l6

In their program, registration between a 2-D computed tomography (CT) image
and a corresponding atlas slice was achieved by physically modeling the atlas as a
continuous elastic solid and deforming it to match the CT data. This technique has
been used in 2-D to match CT images to a predefined atlas image,'” and extended
to 3-D.'819 Since uncertain quantities are involved in the matching process, Gee
et al.202! have introduced a probabilistic approach, where the Bayesian estimate
of the transformation represents an optimal interpretation of the posterior model.

The group at the University of Washington also used a probabilistic formula-
tion with physically based models to constrain the registration problem.2? This
work was extended to 3-D and included a Karhunen-Loeve model for linear elas-
tic deformations.?? Since the quadratic-based regularization models that were used
are valid only for small deformations, Christensen et al. later replaced the lin-
ear elastic constraints with viscous fluid model in order to address the problem
of large deformations.?* The main difference between the two techniques is that
stress restraining the motion relaxes over time in the fluid model, thus allowing
large-magnitude deformations. From the same group, interesting work has been
presented by Joshi et al.,?> where point landmarks, curves, surfaces and volumes
can be used together in a probabilistic setting of Bayesian inference problems.
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As with our work presented here, the nonlinear registration technique developed
by Friston et al. does not use a physical model to constrain the deformation.?6:27
Instead, the deformation is constrained to consist of a linear combination of smooth
basis warps that are defined by discrete cosine transforms. The weighting factors
(i.e. eigenvalues) are found that maximize a similarity criterion between source
and target volumes. While the least-squares solution can be found quickly, the
deformations recovered are limited by the predefined basis warps.

3. METHODS
3.1. ANIMAL: The Algorithm

The procedure described below is designed to recover the nonlinear transformation
required to bring the two brain volumes into registration. Besides achieving nonlin-
ear registration, the recovered transformation can be applied to both segmentation
and dense estimates of anatomical variability.

3.1.1. The input

There are two data volumes used as input to the ANIMAL program. The first repre-
sents the source or subject’s brain volume. The second is the target or model brain
volume. For this paper, seventeen young normal subjects were scanned on a Philips
Gyroscan ACS 1.5 Tesla superconducting magnet system. The data were acquired
using T1-weighted 3-D spoiled gradient-echo acquisition with sagittal volume exci-

tation (TR = 18, TE = 10, flip angle = 30°, 140-180 sagittal slices). Without loss

of generality for the algorithm presented below, one of these subjects was selected
to serve as the target. As part of an ongoing project at the MNI, each of the voxels
in this volume was labeled at a gross anatomical level (e.g. superior frontal gyrus,
thalamus, left lateral ventricle). Once labeled, this volume can serve as an atlas for
the segmentation procedure described in Sec. 2.

3.1.2. The output

The goal of ANIMAL is to recover the nonlinear transformation required to register
two brain volumes. The transformation is a spatial mapping function from IR3 =
IR®. We assume that this function varies smoothly over the entire field and that
it can be described as “locally translational”, i.e. within a small neighborhood,
the deformation field can be approximated by a translational flow field. In the
implementation of the ANIMAL algorithm, the transformation is represented by a
deformation field that is defined on a dense 3-D cubic lattice with a 3-D displacement
vector stored for each node position in the lattice. In practice, three scalar volumes
are stored: dr, dy and dz, representing the z, y and z-components of the 3-D
displacement vectors. For a given arbitrary (z,y, z) position in the domain of the
deformation function, the value of the corresponding 3-D displacement is given by
interpolation in each component volume, yielding the three necessary values for the
3-D vector.
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Since the deformation field is stored with finite sampling, only a band-limited
representation of the continuous nonlinear spatial mapping function is possible. The
scale of the deformation field depends on the scale of the estimation process. This
is addressed in the next section.

3.1.3. Spatial frequency decomposition

It is natural to use large scale structures to establish large, low frequency deforma-
tions and conversely, small scale structures should be used to determine small, high
frequency deformations. The deformations estimated from large scale structures
can be considered to be an average of all the displacements affecting its smaller
sub-components.

Intuitively, the inherent averaging represents a smoothed deformation field, and
ties the scale of the data to the scale of the estimated deformation field. Therefore,
we desire all computations to be scale dependent and this naturally leads to the use
of scale-space methods.

We have selected a multi-resolution strategy (described in Sec. 3.1.7) where
the deformation function is recovered hierarchically at a number of different steps,
with each successive step refining the estimation of the previous one. Each step
attempts to recover the deformation function for a given scale corresponding to the
resolution of the band-limited deformation function to be recovered. If the FWHM of
the current scale step is used to measure resolution, then the voxel spacing of the
deformation field lattice must be no greater than FWHM/2 to recover the function
without aliasing, i.e. the usual Nyquist sampling limit.

Note that at a scale of FWHM= 4 mm, there is a displacement vector every 2 mm.
For a typical head size of 160 x 150 x 180 mm, approximately 500000 vectors must
be estimated (implying on the order of 1.5 x 10® degrees of freedom). At a scale of
FWHM= 16 mm, less than 10000 vectors are required, so that a rough estimation
of the deformation field can be computed in a fraction of the time (on the order of
minutes) required for the final high resolution estimate.

3.1.4. The features

There are two constraints that must be satisfied by the features used in the estima-
tion of the nonlinear deformation:

(1) Since all computations are scale dependent, the features used by ANIMAL should
have a scalable property.

(2) In order to be independent of the original position, scale and orientation of
source volume with respect to the target, the features must be geometrically
invariant.

The original data sets do not satisfy these criteria, and so are not used directly
by ANIMAL. We have chosen to use the blurred image intensity and image gradient
magnitude so that the value of a feature corresponding to a particular anatomical
landmark is the same regardless of its position or orientation within the image .
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volume. These features are calculated by convolution of the original data with
zeroth and first order 3-D isotropic Gaussian derivatives. Convolution with such
an operator maintains linearity, shift-invariance and rotational-invariance in the
detection of features.?®2 The Gaussian kernel also has a scalable property since it
is dependent on the standard deviation, o. In this paper, we use the full-width-
half-max (FWHM= 2.350) of this kernel as the parameter to measure the spatial
scale.

This parameter must be chosen carefully in relation to the scale of the estimated
deformation function. A very large value will introduce too much blurring, possibly
removing important structural detail. Too small a value will extract a lot of struc-
ture and consequently increase the probability of local mis-matches. The size of the
Gaussian blurring kernel applied to the volumetric data was chosen to be equal to
the resolution of the deformation field estimated at the current scale step. Figure 2
shows the gradient magnitude feature at scales of 16, 8 and 4 mm.

Fig. 2. Features used in registration. This figure shows a transverse slice at the level of the
ventricles through the feature volumes used by ANIMAL. From left to right: The original data;
the gradient magnitude feature at FWHM=16mm; FWHM= 8 mm; FWHM= 4 mm. One can see
an increasing amount of detail as the scale is decreased.

3.1.5. The objective function

The objective function is used to evaluate the match between source and target vol-
umes and is maximized by the optimization procedure. Ideally, the function would
have a single maxima when the two volumes are in register, and be monotonically
decreasing to be proportional to misregistration. In fact, the objective function
has a complex shape with multiple local maxima. However, the use of the global
multiresolution strategy described below minimizes the possibility of falling into a
local maxima, as would be the case if the procedure were applied directly at the
finest scale.

Here, the objective function has a classical formulation, that of a summation of
similarity and cost terms:

S(S,TsN) = = 3" [R(S, T; N, &) + C(N, 2)]. (1)

el

Where § and T are the source and target volumes, respectively; N is the nonlinear
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transformation represented by the deformation field that maps points from S to 7T7;
R() is the local similarity measure and C() is the cost function. The summation is
evaluated over all nodes, Z, in the 3-D lattice, £, of the deformation field, and is
normalized by the number of nodes, n.

A number of functions are possible to evaluate the local similarity between the
two data sets. We have chosen to use a normalized correlation statistic:

Zue/\fi f(Sa U)f(T’ N('”))
(Coens F2S ) H(Ten, AT, N@))F’

where Nz is the local neighborhood of # with diameter = 1.5 FWHM, f() is the
volumetric interpolation function, and the summation is performed over all voxel
elements v € Nz. R(), and like-wise S(), take on a maximum value of 1.0 when the
two volumes are in perfect registration.

The cost function introduces a penalty for large transformations, and is used
simply to limit the maximum size of the estimated deformation vector:

R(S,T;N, %) =

(2)

Cd3/2
e if %2 < 3
ONZ) = { B —aprp T dma 3)

00 otherwise,

where d is the length of the additional deformation vector required at node & and
the constant dya, is chosen to be equal to the magnitude of the current FWHM.
The constant ¢ = 0.2 ensures that the function does not overly penalize small
deformations.

3.1.6. Deformation field estimation

The deformation field is recovered in an iterative manner. Each iteration is sepa-
rated in two steps: the first involves the actual estimation of the deformation vectors
at each node by optimization of (1), and the second is a smoothing step to ensure
a continuous deformation field.

Node estimation: In the implementation of ANIMAL, the transformation N is
stored such that there is one deformation vector for each node Z. Since we define
the nonlinear spatial registration transformation to be locally translational, the
deformation at each node can be considered independent from its neighbors when
taking into account the scale of the estimation step®. Therefore, (1) is maximized
when each term in the summation is at a maximum. Hence, global optimization is
divided into small mini-optimizations, where the goal is to find cf; that maximizes
R(S, T; (N+d;), %) for each # in £ while minimizing the deformation cost C(N, Z).

The vector d-; is found using a three-dimensional Simplex optimization proce-
dure, maximizing the correlation between Nz in S and Ny(z) in 7.

Smoothing constraints: Since a continuous deformation field is required, the
estimation process must be constrained so that it cannot compress two distinct

aThere is almost no overlap between the local neighborhoods for neighboring nodes.
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points together or allow an overlap, nor can it induce a tearing of the field. This is
achieved by tempering the deformation vector above with the average of the defor-
mation vectors of the neighboring nodes. If M(&;) is the mean deformation vector
calculated from the immediate neighborhood of Z;, then the resulting deformation
is given by:

d; = od; + (1 — 2)M(&) (4)

where 0 < a < 1.0. A small value of o ensures a very smooth deformation field
at the expense of possibly missing some small local variations, while a large value
of o gives more importance to the estimated deformation vector, with the risk of
permitting local discontinuities to pass into the global deformation field. We have
found that a = 0.5 yields an acceptable balance between local matching and global
smoothness.
|

Tterative refinement: At each scale step, the two step process is repeated itera-
tively on the partially deformed fields. Only a fraction of the estimated deformation
vector for each node is applied and the estimation process is repeated until conver-
gence. This approach dampens the tendency for artifactually large local shifts to
introduce irreversible distortion in the deformation field. A fractional value of 0.6

is a compromise between speed and noise stability.

Since the optimization procedure terminates sooner when the initial conditions
are close to the final result, and since calculating the fit at one scale requires less
than one quarter the time taken for the fit at the previous scale, more iterations
are allowed for the first two resolution steps: 15 iterations at 24 mm scale and 10
at 16 mm scale. Only 3-6 iterations are required at finer scales.

Node thinning: At each iteration, the deformation field is not calculated in regions
with gradient magnitudes below a given threshold (set at 10% of the mean gradient
magnitude), since no deformation can be reliably estimated in these regions. In this
fashion, nodes that fall in the middle of a homogeneous region, away from any edge
structures (e.g. the white matter of the centrum semiovale), are not used to define a
local neighborhood and consequently, are not used to estimate a local deformation
vector. The deformation for these nodes is interpolated from the neighboring lattice
points in the smoothing step described above. This minimizes the influence of low
signal-to-noise gradients and iricreases the speed of convergence.

It is important to note that the threshold is applied only to select or reject
a particular node for estimation of the local deformation, and it is not used to
eliminate any voxels from the calculation of local correlation for any selected node.
Therefore, changing the value to 20%, for example, slightly thins most of the edges
seen in the gradient magnitude image, leaving them behind so that they can be used
to estimate the deformation. However, very low contrast edges may be lost, and
thus the deformation in these regions must be interpolated from the neighboring
nodes.
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3.1.7. Coarse-to-fine multiresolution strategy

In order to speed up the estimation process and to avoid local minima in the ob-
jective function hyper-surface, the optimization procedure used to recover the best
spatial transformations is accomplished in a hierarchical multi-scale fashion where
the registration is performed at different spatial scales, starting with very blurred
data and increasing detail at each step by using less blurred images, refining the
registration at each stage.

The volume field-of-view dictates the absolute largest scale of the deformation
and the smallest is limited by the resolution of the data. A factor of 2 is classically
used to step through scale space, starting at the original pixel size and increasing by
2, 4, 8 and 16 times the original pixel size. Initial experiments showed that kernels
with a FWHM= 32 mm blurred the data too much to be of any use, so the nonlinear
registration procedure begins by using data blurred with a FWHM= 24 mm Gaussian
kernel and lattice node spacing of 12 mm. After ANIMAL is applied at this scale,
the resulting deformation field is resampled onto a 8 mm lattice, and the estimation
continues using data at FWHM= 16 mm. Depending on the application, the process
can stop after the 16 mm fit, or continue decreasing scale with data blurred at 8, 4
and 2 mm for higher resolution fits and consequently longer run times.

On average, when running on an SGI Indigo? (175Mz R4400 CPU, 115 SPEC{p92),
each iteration at each scale takes 2.4 minutes at FWHM= 24 mm with a 3D lattice
containing approximately 7600 nodes, 3.6 minutes at FWHM= 16 mm (28600 nodes)
and 12.2 minutes at FWHM= 8 mm (253000 nodes).

3.2. Segmentation

Manual anatomical segmentation is usually accomplished by comparing a figure
from an anatomical textbook with the digital image to be segmented. The position
of a particular border is refined by comparing it, and its neighboring structures, to
the contours in the atlas. Hence, segmentation is essentially a registration problem.

A similar process is applied here. Since the source and target volumes are
registered, the predefined labels of the target volume inherently segment the source
volume as well. Explicit segmentation of the source volume in its native space is
achieved by mapping the labels through the inverse transformation recovered by
ANIMAL.

Implicit in this analysis is the assumption that the first data set is perfectly
segmented and that the one-to-one mapping exists. Even though the latter is not
strictly true, one brain may have a sulcal pattern that another does not, the as-
sumption does not lead to catastrophic deformations of one structure onto another
in practice. The brains are matched at successively finer scales until the assumption
of anatomical correspondence breaks down.

The main advantage of this type of segmentation methodology is that it results in
atlas-independent segmentation since structure identification is simply a by-product
of nonlinear registration. The anatomical labels defined on the target volume are not
used in any way to determine the match between data and model. Therefore, any
atlas defined on the target MRI brain volume can be used for segmentation, thereby
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allowing for the co-existence of multiple atlases, each of which is simultaneously
mappable to the native MR image volume without the CPU-expensive recalculation
of the nonlinear spatial transformation required for registration.

3.3. Variability Analysis

The analysis of anatomical variability requires a common coordinate system with
respect to which the spatial variability of corresponding features from different
individuals can be expressed. Since that positional variability will depend on the
degrees of freedom (DOF) allowed for mapping the image data from its original,
native space into stereotaxic space, it is essential that the transformation from the
native to the common space be well-defined and reproducible. For simplicity and
ease of use of interpretation, it is also desirable that the transformation has as few
DOF as possible while accounting for most of the positional variability.

For this study, a Talairach-like brain-based coordinate system has been cho-
sen as the standard,? so called stereotaxic, space and a simple 9-parameter linear
transformation is used to map brain volumes into this space.3® Any discussion of
measurements, averages or variabilities must bear these two choices in mind.

It is important to note that while they are related, the problem of guantifying
anatomical variability is different from the practical issue of removing anatomical
variability. The goal of latter is to render all brains identical after transformation,
and can be achieved (in part) by the application of the nonlinear spatial transfor-
mation recovered by ANIMAL, described earlier.

To quantify anatomical variability, it is necessary to identify homologous features
between the source and target volumes and to measure the difference in position
between them, within the stereotaxic space. This identification can be achieved au-
tomatically by ANIMAL, since the recovered deformation field essentially establishes
correspondence between the homologous points. The field can be interpreted as the
map of “positional differences” between individual source (after affine transforma-
tion) and target volumes. In other words, for every 3-D coordinate in the target
space, the registration procedure yields a vector-valued estimate of the difference
in position between the two data sets. Thus, the two goals of identification and
difference measurement are met by ANIMAL.

This information derived from the deformation fields, when averaged over a
large number of individual/target pairs, can yield estimates of normal anatomical
variability. The standard deviation at each voxel position (over the deformation
fields estimated for the 17 subjects described in Sec. 3.1.1) is computed separately
for each of the z, y and z components. These values are combined to yield a single
number for each voxel measuring inter-subject variability (ISV), equivalent to a 3-D

FWHM measure: FWHM= 2.35\/(03 + 02 +02)/3.

4. EXPERIMENTS AND RESULTS

Three experiments are presented to validate the ANIMAL algorithm. The first in-
volves only simulated data to examine nonlinear registration and brain structure
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segmentation in a completely controlled setting. In the second experiment, real
MRI data is used to demonstrate the power of ANIMAL for both registration and
segmentation in a real-world situation. Finally, a comparison between the manual .
and automatic estimates of anatomical variability is shown in the last experiment.

4.1. Simulations

In order to validate the nonlinear registration algorithm with real volumetric MRI
data, a single data set was selected from the original group of 17. A random 3-
D deformation was applied to the selected brain volume to create a warped data
volume. ANIMAL was used to recover the applied transformation.

The random 3-D nonlinear transformation was defined in the following manner.
An original set of twenty landmarks were selected throughout the brain volume.
A deformed set of landmarks was produced by adding a random displacement to
each landmark coordinate. Previous work in our laboratory has shown anatomical
variability to be on the order of 4-7 mm.® A Gaussian random number generator
with a standard deviation of 5 mm was used to produce each component of the
displacement vector.

The two resulting point sets were then used to define a continuous 3-D thin-plate
spline (TPS) transformation function. This interpolant was used to resample the
original data and produce the spatially warped source data set for testing. The
average deformation magnitude is on the order of 7.7 mm with a maximum of
19.7 mm.

Figure 3 shows transverse slices through the original and five warped test vol-
umes. While these images demonstrate extreme deformations, they form a good
test-base for ANIMAL.

4.1.1. Nonlinear Registration

The multiresolution ANIMAL registration strategy was applied to each test-original
source/target pair, and the recovered transformations were used to resample the
test volumes back into the original target space.

Figure 3 shows the resulting volumes after linear registration. While each head is
approximately the same size and orientation, the transverse slices demonstrate that
they are not at all similar in shape, nor are the brain structures sliced at the same
level within each brain. Figure 4 shows the same brains after nonlinear registration.
It is apparent that the deformation field recovered by ANIMAL has accounted for
a great deal of the shape nonuniformity. The ventricles appear to have the same
shape, the basal ganglia structures are sliced at the same level and much of the
cortex is properly aligned. The average images in Fig. 5 were created by simply
computing the mean intensity value over the five brains for each pixel position in
the volume. Here it is clear that the nonlinear deformation field has been recovered
over the five test cases.
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Fig. 3. Data for experiment 1. This figure shows transverse slices through the level of the ventricles
for the original (upper left) and the five warped test volumes, after resampling with the linear
transformation recovered by ANIMAL. These volumes are perhaps deformed more than one would
find on average in the normal population, however subjects representing an extreme of normal
anatomical variability could be shaped like these examples. Note that while only 2-D images
are shown in the figures, all calculations are computed in 3-D on volumetric data. Deformation
procedures that are applied only on 2-D images from a volumetric data set can never recover the
structure that is out of plane, regardless of the amount of 2-D deformation permitted.

Fig. 4. Results of experiment 1. This figure shows the original (upper left) and the five warped
volumes, after resampling with the nonlinear deformation field recovered by ANIMAL. One can see
that not only the global head shape is accounted for, but internal structures such as the ventricles
are well aligned.

In order to better judge the quality of the recovered transformation, the re-
sampled test volumes were subtracted from the original volume and the resulting
difference images are shown in Fig. 6. Here, one can see that ANIMAL does indeed
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Fig. 5. Average images: linear vs nonlinear. This figure shows an intensity average of the resampled
test volumes, On the left, the five volumes were resampled by the linear transformation and on the
right, by the non-linear transformation recovered by ANIMAL. One can clearly see the advantage
of the nonlinear registration when pixel alignment is required for image processing,.

Fig. 6. Difference results for experiment 1. These difference images were computed by subtracting
the resampled test volumes from the original volume (upper left). The pixel intensity scale of the
difference images is six times greater than the original MR images. One can see that in general, the
nonlinear registration is quite good however some regions of the cortex appear to be mis-aligned
(indicated by very bright or very dark regions).

properly recover the transformation required to register source and target volumes.
However, there are limited regions near the cortex that are misaligned.
Quantitative evaluation of ANIMAL is possible in this experiment since the spatial
transformation between the source and target data sets is known. Indeed, the
ability of ANIMAL to recover the applied transformation can be measured for specific
landmark points within the volume. In order to have a brain-size independent
measure, we have chosen to define a “recovery error” in the following way. A 3-D
coordinate p, defined in the target space is first mapped through the transformation
used to produce the warped volume, yielding p’. The resulting coordinate, p’, is
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then mapped back into the target space using the recovered transformation to give
p". If the recovered transformation were perfect, then there would be no difference
between the positions of p and p”. The recover error is defined to be r = |p — p”|,
where | - | is the I3 norm.

In order to have a good idea of the registration throughout the brain volume, a
3-D lattice of points with 10 mm spacing was defined on the target brain (yielding
2010 nodes). On an average for the 5 volumes, the root mean squared (rms) recovery
error evaluated over all nodes was 5.6 mm after linear registration. This error was
reduced by 64%, to 2.0 mm, after nonlinear registration.

4.1.2. Segmentation

As described in Sec. 3.2, gross structure segmentation is achieved by mapping la-
bels, previously defined on the target volume, through the inverse of the recovered
nonlinear deformation, onto the source volume. In this way, segmentation can be
used as another tool to validate the nonlinear registration process when compared
to an expert’s manual segmentation of the same structures.

A neuro-anatomically trained expert identified cortical grey matter structures
(superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus), basal gan-
glia structures (thalamus, caudate nucleus, putamen, lentiform nucleus) and cere-
brospinal fluid (CSF) filled spaces (lateral ventricles) on the selected target volume.
These structures were mapped through the inverse of the recovered transformation
onto each of the five test volumes and the resulting segmented images are shown in
Fig. 7. One can see that the structures in the test volumes are well delimited by
the recovered transformation.

Fig. 7. Segmentation results for experiment 4.1.2. This figure shows the structure labels on the
original (upper left) and the automatic segmentation on the five warped data volumes (in their
native space). The segmentation results from mapping the original labels through the inverse of
the recovered transformation. One can note that even the cortical structures are well segmented
by the ANIMAL algorithm.
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4.2. Real MRI Data

Since ANIMAL has been shown to work well on real MRI data from the same subject
with simulated deformations to model other subjects, the next logical step is to
investigate its application to register and segment real MRI data from different
subjects. We have continued to use the previously described labeled brain as the
target and a second MRI volume was selected from the 17 subjects described in
Sec. 3.1.1 and used as the source volume. ANIMAL was applied to recover the source
to target transformation.

The top row of Fig. 8 shows slices through the target, the source after resam-
pling through the recovered linear transformation and the source after nonlinear
transformation. One can see that ANIMAL does indeed not only recover the global
shape of the head and brain, but more importantly aligns internal structures to
enable voxel-to-voxel comparisons. In order to judge the quality of the registration,
the bottom row of Fig. 8 shows the difference images between the target and the
source volume, after linear and nonlinear resampling. These images confirm that
the nonlinear registration has accounted for the anatomical variability between the
source and target brains.

Fig. 8. Registration results for real data. Top row left to right: target MRI, source MRI after
linear registration, source MRI after nonlinear registration. Bottom row: corresponding difference
images. Here one can see that even when applied to real data, ANIMAL is able to account for
brain shape and structure position.

Once again, the target volume labels were mapped through the inverse of the
recovered transformation to achieve segmentation of the source volume in its original
space. The structures defined on the target were also labeled by hand on the source
by a neuroanatomical expert and were used to validate the automatic segmentations.
Figure 9 shows the comparison between the manual and automatic segmentations.
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Fig. 9. Segmentation results for real data. Left: a coronal slice through the frontal cortex of
the source volume; Middle: with manually identified structure labels; Right: with automatically
identified structure labels.

Fig. 10. Variability map. The images show the average intensity volume of the 17 subjects mapped
into stereotaxic space nonlinearly along with the corresponding slices through the average vari-
ability map. The cross marker (z = —44 mm, y = —37 mm, 2 = 14 mm) is near the planum
temporale, a region known to be variable, measured here to be 6.3 mm 3-D FWHM, and appearing
more variable than the right.

4.3. Anatomical Variability

After automatic segmentation, the second goal set forth in the introduction was the
automatic estimation of anatomical variability. The method described in Sec. 3.3
was applied to a group of 17 MRI brain volumes (3-D spoiled gradient-echo acqui-
sition, TR = 18, TE = 10, flip angle = 30°, lmm?® voxels), registering them to
a MRI-based stereotaxic atlas.® The 17 deformation fields were used to compute
the anatomical variability map shown in Fig. 10. The regions of largest neuro-
anatomical variability were posterior poles of the lateral ventricles, the region near
the fourth ventricle, the cingulate sulcus (slightly more on the left than the right),
the inferior frontal lobe and the area just above the splenium of the corpus callo-
sum. The anatomical variability map is not symmetric on the left and right sides.
The left frontal lobe and the right parieto-occipital lobe appear to be more variable
than their counterparts.
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Correlation of variabliity map and landmark ISV
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Fig. 11. Correlation between manual and automatic variability estimates. This graph shows the
correlation between the automatic estimate of neuro-anatomical variability and the manual es-
timate based on ISV for each of the 34 landmarks. The regression coefficient is 0.867, and is
significant at the 1% level.

For quantitative validation, the manual ISV estimates from a previous project®
were compared with the automatic estimates derived here and plotted in Fig. 11.
The average manually estimated ISV value was 3.9 mm compared to 4.2 mm here.
The regression coeflicient was 0.867, demonstrating good correlation between both
methods at the 1% significance level.

5. DISCUSSION

The experiments presented in Sec. 4.1 indicate that ANIMAL is capable of recovering
important deformations between the source and target volumes (at least up to the
20 mm tested), resulting in almost perfect registration after resampling through the
recovered transformation (see Fig. 4). It is important to note that the structure in
the difference images of Fig. 6 may be due to causes other than mis-registration.
Trilinear resampling was used to map the test volumes back onto the target before
the subtraction, so the very small (thin) edges seen in the difference images may
be due to interpolation errors. Also, the ANIMAL procedure was stopped at the
8 mm scale (i.e. a deformation vector every 4 mm). Perhaps the procedure should
be applied again at a finer scale to recover the smallest residual deformations not
accounted for at the 8 mm scale.

The recovery error is dependent on the exact point-to-point correspondence
throughout the entire volume. Since this value was non-null in the simulations, it
may indicate a limitation of the assumption that local neighborhood correspondence
can be used to recover the global transformation. Indeed, deformation vectors can
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be estimated only where features were extracted from the volumetric data sets. In
the implementation of ANIMAL, vectors are estimated only in regions where the
gradient magnitude is greater than a small threshold. For homogeneous regions
(i.e. where the gradient magnitude is very small), the deformations are interpolated
from neighboring regions in the smoothing step. This problem affects not only the
ANIMAL registration procedure but most registration procedures in the literature
that are based on features extracted from the data.

Still, the recovery error does indeed quantify the difference between the applied
(i.e. simulated) and the recovered nonlinear deformations. While this measure is
important to validate the technique and is important in the measure of anatomical
variability it may be perhaps too strict for other applications. For example, point-
to-point correspondence is not strictly required for structure labeling. As long as
equivalent labels are mapped together, segmentation is achieved as is shown in
Fig. 7 where even the cortical structures are well segmented. These experiments
show that registration can indeed be used to achieve segmentation.

The major difference between the simulations described above and the exper-
iment using two different subjects for the source and target volumes is that the
assumption that there exists a 1-to-1 homology between the two brains can no
longer be validated. Even with this limitation, the images in Fig. 8 show that ANI-
MAL is able to recover the global brain shape and match individual brain structures.
One can see in the difference images that there is almost perfect registration of the
central portion of the brain (around the basal ganglia and ventricles) — precisely
where the assumption of homology is valid. The region of the cortex where the dif-
ference images are non-null corresponds to regions where precise homology does not
exist for all structures. Even though it is not clear what the correct registration is,
nor even if there exists such a concept for non-homologous structures, the images
of Fig. 9 shows that ANIMAL is able to use the labels from the target volume to
segment the source.

It is important to note that the notion of 1-to-1 correspondence depends on
the spatial scale of comparison. When the source and target datasets are blurred
at 16 mm FWHM, all structures of the brain are topologically equivalent because
only major structures (temporal lobe, ventricles, longitudinal fissure) are apparent.
Smaller scale structures are simply not visible and do not take part in the matching
process. When ANIMAL is applied to this scale of data, the overall shape of the head
and brain are corrected. At the next scale, data is blurred with a Gaussian kernel
with an 8 mm FWHM. ANIMAL is still able to register structures as long as there
is a 1-to-1 mapping between them such as the ventricles, basal ganglia and major
sulci. However, problems occur on the cortex, where topology is not consistent for
secondary and tertiary gyri.3! This is a complex problem beyond the scope of this
paper and has been treated by other authors.32:33

There are a number of directions we plan to follow in the near future to improve
the algorithm. Presently, ANIMAL uses only the gradient magnitude feature when
computing the similarity between two neighborhood regions. To improve registra-
tion at the cortex, we have been looking at other features such as the Lvv described
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by Florack et al.,3* or explicitly extracted sulci.>® Along the same lines, we are also

looking at other new promising similarity metrics such as the mutual information
criterion described by Collignon®® and comparing them against the correlation func-
tion used in the current implementation. Finally, the variability map estimated in
Sec. 4.3 provides information that can be used to constrain the estimation process
on other data volumes. We are looking at probabilistic methods to incorporate this
information into the ANIMAL algorithm.

6. CONCLUSIONS

We have presented a completely automatic method for non-linear registration of
volumetric MRI data of the human brain. The design of the ANIMAL procedure
meets the two goals set forth at the beginning of this paper, namely that of au-
tomatic segmentation and automatic estimation of anatomical variability, when
using a pre-labeled target volume, resident in a standardized coordinate system.
The multiresolution nonlinear registration strategy has been shown to be accurate
and robust on both simulated and real MRI data, where it was able to recover
important deformations, of up to 20 mm. The algorithm is useful for automatic
labeling of individual brain structures in newly-acquired MRI volumes, by match-
ing a previously-labeled MRI volume to the new unlabeled MRI volume. Thus, the
redefinition of segmentation as a registration problem has been shown to be valid.
The experimental results also demonstrate the practical utility of an automated 3-D
image deformation algorithm for quantifying and removing, if so desired, anatomical
variability among individual brains.
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