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elastix: A Toolbox for Intensity-Based
Medical Image Registration

Stefan Klein', Marius Staring’*, Keelin Murphy, Max A. Viergever, and Josien P. W. Pluim

Abstract—Medical image registration is an important task in
medical image processing. It refers to the process of aligning data
sets, possibly from different modalities (e.g., magnetic resonance
and computed tomography), different time points (e.g., follow-up
scans), and/or different subjects (in case of population studies). A
large number of methods for image registration are described in
the literature. Unfortunately, there is not one method that works
for all applications. We have therefore developed elastix, a
publicly available computer program for intensity-based med-
ical image registration. The software consists of a collection of
algorithms that are commonly used to solve medical image reg-
istration problems. The modular design of elastix allows the
user to quickly configure, test, and compare different registration
methods for a specific application. The command-line interface
enables automated processing of large numbers of data sets,
by means of scripting. The usage of elastix for comparing
different registration methods is illustrated with three example
experiments, in which individual components of the registration
method are varied.

Index Terms—elastix, image registration, medical imaging,
open source, software.

1. INTRODUCTION

MAGE registration is a frequently used technique in med-
I ical image processing. It is the task of finding the spatial
relationship between two or more images. Areas of application
include the alignment of data sets from different modalities [1],
comparison of follow-up scans to a base-line scan [2], align-
ment of pre- and post-contrast images [2]-[4], updating treat-
ment plans for radiotherapy and surgery [5], [6], atlas-based
segmentation [7]-[13], creating models of anatomy [14], and
aligning training images for classification [15], [16].
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In registration, one image, which is called the moving image
Iy (z), is deformed to fit the other image, the fixed image
Ir(z). In other words, registration is the problem of finding a
coordinate transformation T'(x) that makes I, (T'(2)) spatially
aligned with Ir(z). The quality of alignment is defined by
a cost function C(T;Ir,Ins). The optimal coordinate trans-
formation is estimated by minimizing the cost function with
respect to T, usually by means of an iterative optimization
method embedded in a hierarchical (multiresolution) scheme.
The registration problem is not always properly defined, for
instance when registering one cerebral cortex to that of another
patient. Extensive reviews on the subject of image registration
are given in [17]-[22].

Application of an image registration method requires many
choices to be made, such as the optimization method, the mul-
tiresolution strategy, the method of image interpolation to eval-
uate I/ (T'(x)), the coordinate transformation model, and the
definition of the cost function. Several possibilities for the opti-
mization method are discussed in [23] and [24]. An overview of
multiresolution strategies is given in [19]. Various image inter-
polation methods are compared in [25]. The degrees-of-freedom
of the coordinate transformation 7" determine the types of defor-
mations that can be recovered. Whereas in many applications it
may be sufficient to consider only rigid transformations (global
translations and rotations) [26], [27], frequently a more flexible
transformation model is needed, allowing for local deformations
[1], [31, [28]-[39]. For the cost function C many options have
been proposed in the literature. Commonly used intensity-based
cost functions are the mean squared difference (MSD) [40],
[41], normalized correlation (NC) [42], [43], mutual informa-
tion (MI) [26], [44]-[46], and normalized mutual information
(NMI) [4], [7], [47]. Sometimes, a regularization term is added
to the cost function, in order to penalize undesired deformations
[2], [4], [35]. In medical image processing research it is often
necessary to compare several options for each of the registra-
tion components. Given the large number of choices, this can
be a tedious procedure.

To facilitate the research on medical image registration and to
simplify its application, we have developed an open source soft-
ware package: elastix. The elastix software has a mod-
ular design, including several optimization methods, multireso-
lution schemes, interpolators, transformation models, and cost
functions. This allows the user to quickly compare different reg-
istration methods, in order to select a satisfactory configuration
for a specific application. elast ix has a command-line inter-
face, which enables automated processing of large numbers of
data sets, by means of scripting. The software is built upon a
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Fig. 1. Basic registration components. The scheme is an extended version of the scheme introduced in [48]. Each component is accompanied by a section number
where more information can be found. Dashed box around the complete scheme represents the various hierarchical strategies, which can affect all components;

see Section II-C-6.

widely used open source library for medical image processing,
the Insight Toolkit (ITK) [48].

In Section II, the general registration framework of elastix
is discussed, key features of the software are presented, and
an overview of the available registration components is given.
In Section III, three examples of applications that can be han-
dled with the software are given. In these experiments, the in-
fluence of three important registration components is demon-
strated. Section IV presents several guidelines for the use of
elastix. The paper ends with a discussion (Section V) and
the conclusions (Section VI).

II. IMAGE REGISTRATION WITH ELASTIX

A. Registration Framework

Mathematically, the registration problem is formulated as an
optimization problem in which the cost function C is minimized
with respect to T'. The elastix software is based on a para-
metric approach, meaning that the number of possible transfor-
mations is limited by introducing a parametrization of the trans-
formation. The optimization problem reads

ﬂ:argm‘inC(T#;IF,IM) 1
where the subscript p indicates that the transform has been pa-
rameterized. The vector pu contains the transformation param-
eters. The reader is referred to [21] and [35] for an overview
on nonparametric methods. The minimization problem (1) is
solved with an iterative optimization method, usually in a mul-
tiresolution setting. A schematic overview of the basic registra-
tion components and their relations is given in Fig. 1, which is
a slightly extended version of the scheme introduced in [48]. A
detailed explanation of the various components is given in Sec-
tion II-C.

B. Software Characteristics

The elastix software is structured according to the block
scheme of Fig. 1. For each component (transform, cost function,

etc.) several choices are available. The user can configure a reg-
istration algorithm by specifying the names of the desired com-
ponents in a parameter text file. Additional settings that some
components may require can also be entered in this parameter
file. Fixed and moving image file names are supplied as com-
mand-line arguments, so that multiple image pairs can be regis-
tered using the same parameter settings. An example of usage is
given in the Appendix. Both 2-D and 3-D images are supported.

All output of the registration, such as the deformed moving
image /»/(T;(x)) and intermediate progress information, is
saved to disk. It is often necessary to apply the resulting trans-
formation T, to data sets other than the moving image. For ex-
ample, in atlas-based segmentation methods [7], [8] the transfor-
mation is applied to a segmentation (label image) of the moving
image. To that end, elastix outputs a text file that describes
the transformation T, This text file can subsequently be passed
to an accompanying program, called transformix, together
with the image to be deformed. This program can also be used
to evaluate the transformation at user-defined points, or to gen-
erate the deformation field.

A large part of the elastix code is based on the ITK [48].
The use of the ITK implies that the low-level functionality
(image classes, memory allocation, etc.) is thoroughly tested.
Naturally, all image formats supported by the ITK are supported
by elastix as well. The C++ source code can be compiled
on multiple operating systems (Windows XP, Linux, Mac OS
X), using various compilers (MS Visual Studio up to version
2008, GCC up to version 4.3), and supports both 32 and 64
bit systems. In addition to the existing ITK image registration
classes, elastix implements new functionality. The most
important enhancements are listed in Table 1.

The elastix source code consists roughly of two layers,
both written in C++: A) ITK-style classes that implement image
registration functionality, and B) elastix wrappers that take
care of reading and setting parameters, instantiating and con-
necting components, saving (intermediate) results, and similar
“administrative” tasks. The modular design enables adding new
components, without changing the elastix core. Adding a
new component starts by creating the layer A class, which can
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TABLE I
THE MOST IMPORTANT ENHANCEMENTS AND ADDITIONS IN elastix,
COMPARED TO THE ITK

e A modular framework for sampling strategies.

e Several new optimisers: Kiefer-Wolfowitz, Robbins-Monro, adaptive
stochastic gradient descent, evolutionary strategy.

e Complete rework of existing ITK optimisers, adding more user control
and better error handling: quasi-Newton, nonlinear conjugate gradient.

e Several new or more flexible cost functions: (normalised) mutual
information, implemented with Parzen windowing similar to [45], mul-
tifeature o-mutual information, bending energy penalty term, rigidity
penalty term.

e The ability to concatenate any number of geometric transformations.

e The transformations support computation of not only 8T'/dp, but also
of spatial derivatives OT'/dx and 2T /2, and their derivatives to
1, frequently required for the computation of regularisation terms.

e The compact support of certain transformations, i.e. the fact that the
derivative T /O is zero for many of its indices, is in the ITK currently
only exploited for the combination of mutual information and a B-spline
transformation. In elastix this is integrated in a generic way (not
only for the combination of mutual information and B-splines).

e Linear combinations of cost functions, instead of just a single cost
function.

e A Gaussian pyramid without downsampling.

be compiled and tested independent of layer B. Subsequently, a
small layer B wrapper needs to be written, which connects the
layer A class to the other parts of elastix.

Executables and source code are publicly available online!
under the BSD license, which allows free academic and com-
mercial use and permits modification of the source code. A
manual for elastix and an example of usage can also be
downloaded. The manual includes an example parameter file,
describes in detail the various options that can be specified, and
provides recommendations for image registration. The manual
also contains information about elastix’s more advanced
registration possibilities, not treated in this paper, such as the
registration of multispectral data. In addition, we created a
“parameter file database,” which is a collection of parameter
files that proved successful, together with a short description
of the clinical application for which they were used. The
parameter file database can be found through the website? and
elastix-users are encouraged to upload their own settings.
A default parameter file can also be found here.

C. Registration Components

In the following subsections, more information is given about
each component of the block scheme in Fig. 1.

1) Cost Function: The cost function C measures the sim-
ilarity between the fixed image and the transformed moving
image. An example is the MSD

MSD(Tyi T, Ing) = 32 (Ir(&) — I (Tu(@))? @)
x€Qp

where 2 denotes the fixed image domain, and N the number
of voxels & sampled from the fixed image domain. The sampler,
which is responsible for selecting the samples z, is discussed in
more detail in Section II-C-4.

Thttp://elastix.isi.uu.nl

2http://elastix.isi.uu.nl/wiki.php
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The following metrics are currently supported by elastix:
mean square difference (MSD), normalized correlation (NC),
mutual information (MI), normalized MI (NMI), «-MI [49],
[50], and the x-statistic [S1]. MSD is only suited for two images
with equal intensities, i.e., for images from the same modality.
NC is less strict, it assumes an affine relation between the inten-
sity values of the fixed and moving image. MI, NMI, and a-MI
assume only a statistical relation between the intensities of the
images. They are therefore suited not only for monomodal, but
also for multimodal image pairs. The «-statistic can be used for
registering binary images. It measures the overlap of objects in
the images. For each of the metrics above, a localized version
can be constructed, as explained in [8], by selecting the appro-
priate sampler. This is described in Section II-C-4.

Parameters such as the number of bins of the joint histogram,
needed for MI and NMI, can be set in the aforementioned pa-
rameter file.

When a nonrigid transformation model is used, a regulariza-
tion term that penalizes undesired deformations can be added
to the cost function. An example is the incompressibility con-
straint described by [4], which penalizes compression and ex-
pansion of structures. Other examples of regularization terms
are the bending energy of a thin plate [3] and the rigidity penalty
term [2]. elastix supports these constraints.

2) Transformation: The parametrization of the coordinate
transformation T', determines the degrees-of-freedom of the
deformation. An example is the affine transformation model,
which allows for translation, rotation, scaling and skew of the
images

Tu(z)=Az +t 3)

where A is a matrix and ¢ represents the translation vector. The
parameter vector u is formed by the matrix elements a;; and the
translation vector. In 2-D, this gives a vector of dimension 6:
p = (a11,a12, a21, a2, t,, t,)*. In 3-D, p consists of 9 matrix
elements and 3 translational components.

The following transformation models are currently supported
by elastix, with the number of degrees-of-freedom (dimen-
sion of p) between brackets: translation (3), rigid (translation
and rotation, 6), similarity (rigid plus isotropic scaling, 7),
affine (12), and nonrigid (varying size of w). In the literature,
several parametric nonrigid transformation models have been
proposed [3], [28], [30], [32], [36], [37], each having its own
advantages and disadvantages. In elastix a B-spline repre-
sentation [3] has been implemented and several physics-based
spline models [30], [52], such as the thin-plate spline and the
elastic body spline. The B-spline transformation is modelled
as a weighted sum of B-spline basis functions, placed on a
uniform control point grid. The B-spline basis functions have
local support [53], which is beneficial for fast computation. The
flexibility of the deformation is defined by the resolution of the
control point grid, which has to be supplied by the user via the
parameter file. Section III-A demonstrates the effect of using
different control point resolutions for an example application.
The physics-based spline transformation allows the user to
place control points at arbitrary positions, not necessarily on
a uniform grid. Lastly, elastix includes a transformation
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that is modelled as a weighted combination of user-specified
transformations: T',(z) = >, w;T;(x). The weights w; form
the parameter vector g. The subtransforms T';(z) may for
example follow from a statistical deformation model, obtained
by principal component analysis [54].

The aforementioned regularization term in the cost function
is often expressed in terms of first- and second-order spatial
derivatives of the transformation 9T /9zx and 9*T /0x? [2]-[4].
The modular framework of the ITK was extended to support
these derivatives, together with their derivatives to p required
for gradient-based optimization routines.

Frequently, nonrigid registration must be preceded by a rigid
or affine registration, in order to achieve a rough initial align-
ment. elastix supports the concatenation of any sequence
of transforms. The user may also supply an initial transforma-
tion, determined in advance by the user. It can be expressed as
one of the available transformations, or as a dense deformation
field vector image. The transformation may for example be de-
rived (in external software) from a set of manually clicked cor-
responding points.

3) Optimization: To solve (1), an iterative optimization pro-
cedure is employed. In every iteration k, the current transfor-
mation parameters p, are updated by taking a step in the search
direction d,

Bigp1 = My — ardy “)

with aj a scalar that determines the step size. A wide range
of optimization methods can be formulated in this way, each
having different definitions of a;, and dy, [24]. A common choice
for the search direction is the derivative of the cost function
OC /O evaluated at the current position ;. In this case, (4)
reduces to a gradient descent method.

elastix includes all optimization methods described in
[24]: gradient descent, quasi-Newton, nonlinear conjugate
gradient (several variants), evolution strategy, and a number
of stochastic gradient descent methods (Kiefer—Wolfowitz,
Robbins—Monro, and simultaneous perturbation). An exhaus-
tive search routine is also included, which is mainly useful for
examining the cost function, as demonstrated in Section III-B.
The experimental results in [24] indicate that a stochastic
gradient descent method (Robbins—Monro) is a good choice for
many applications. It reduces the computation time per itera-
tion by using only a small subset of the fixed image’s voxels
for computing the cost function derivative. In each iteration,
new samples must be selected randomly. This can be realized
in elastix by selecting an appropriate sampler, which is
explained in the next subsection. A recent extension of the
Robbins—Monro algorithm, called adaptive stochastic gradient
descent [55], which aims at simplified parameter selection and
further acceleration, is also included in elastix.

4) Sampling Strategies: To compute the cost function C (and
its derivative OC /Op) a set of samples £ € Qp needs to be se-
lected, as in (2). The sampler component in Fig. 1 is responsible
for this. The most straightforward strategy is to use all voxels
from the fixed image, which has as an obvious downside that it
is time-consuming for large images. A common approach is to
use a subset of voxels, selected on a uniform grid, or sampled

(a) (©)
(e (8

)

Fig.2. Two multiresolution strategies using a Gaussian pyramid (¢ = 8.0,4.0,
2.0 voxels). The top row shows multiresolution with downsampling, the bottom
row without. Note that in the top row the number of voxels in each dimension is
halved every resolution, but the voxel size is doubled, so physically the images
are of the same size. (a) res. 0. (b) res. 1. (c) res. 2. (d) original. (e) res. 0. (f)
res. 1. (g) res. 2. (h) original.

randomly. Another strategy is to pick only those points that are
located on striking image features, such as edges [56].

elastix currently supports the use of all voxels, a subset of
voxels selected on a uniform grid, random sampling of voxels,
and random sampling off the voxel grid (at nonvoxel locations).
Random sampling off the grid has been shown to improve the
smoothness of the cost function [57], [58]. In Section III-B, we
demonstrate this effect by comparing several sampling schemes
on an example application. For all sampling strategies discussed
above, the user may optionally supply a mask image, indicating
regions of interest. In this way, one can force the sampler to pick
only points near edges in the image, for example.

With random sampling, the elastix user can enforce the
selection of new samples in every iteration k of the optimiza-
tion process. In this way, the stochastic optimization methods
described in [24] can be realized. The localized mutual informa-
tion strategy, presented in [8], can be implemented by letting the
sampler pick points in a small neighborhood, instead of from the
entire domain Q. A new neighborhood is randomly selected in
every iteration of the optimization procedure.

5) Interpolation: For computation of the cost function, the
value Ips (T (x)) is evaluated at nonvoxel positions, for which
intensity interpolation is needed. Several methods for inter-
polation exist, varying in quality and speed, including nearest
neighbor, linear and A'th-order B-spline interpolation [53],
[59]. elastix supports all interpolators mentioned above.

For the fixed image I no interpolation is required with most
sampling strategies, since the image is sampled at voxel loca-
tions. For sampling off the voxel grid, however, an additional
interpolator is needed, not depicted in Fig. 1.

6) Hierarchical Strategies: Hierarchical (multiresolution)
strategies are an important aspect of image registration. For an
extensive overview, the reader is referred to [19]. elastix
implements several hierarchical strategies:

* The pyramid components in the block scheme of Fig. 1
represent the multiresolution schemes for the image data.
Two types of image pyramids are available in elastix:
Gaussian pyramids with and without downsampling. Fig. 2
illustrates the difference.
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e The second important multiresolution strategy, not ap-
parent from Fig. 1, is the gradual increase of transfor-
mation model complexity. During nonrigid registration, a
hierarchical effect can be realized by starting with a coarse
B-spline control point resolution and gradually refining the
grid in subsequent resolutions [53], thereby introducing
the capability to recover more fine-scale deformations. In
elastix, the B-spline control point grid can be refined
using any upsampling factor, possibly different for each
dimension.

* More generally, many parameter settings can be subjected
to a hierarchical strategy in elastix. For example, the
number of joint histogram bins that is used for computing
MI and NMI could be gradually increased, as was sug-
gested in [45].

The third point above is represented by the dashed box
around the entire scheme. The first two strategies, regarding
image pyramid level and transformation model complexity, are
depicted explicitly in Fig. 1 by the dashed arrows originating
from the outer box. In Section III-C several multiresolution
strategies are compared for the nonrigid registration of com-
puted tomography (CT) chest scans.

III. EXPERIMENTS AND RESULTS

In this section, some applications of elastix are de-
scribed, to illustrate its convenience for configuring, testing,
and comparing different registration methods. To illustrate
the wide usability of elastix, the image data was chosen
from different modalities, at different acquisition times, and
from different subjects. Three key components of registration
were studied: the transformation model in Section III-A, the
sampling technique in Section III-B, and the multiresolution
strategy in Section III-C. The experiments demonstrate the
impact these components can have on the registration results,
and therefore stress the importance of a proper configuration
for the application at hand.

The elastix settings that were used in the following sub-
sections have been made available via the parameter file data-
base, see Section II-B. Exact registration settings for each ex-
periment can be inspected there, and the parameter files can be
downloaded for use in other applications.

A. Transformation Models

The effect of the type of transformation was investigated by
comparing the registration performance of several transforma-
tion models.

To this end, a set of 50 clinical MR scans of the prostate
was used, all originating from different patients. The scans
were made by the Department of Radiotherapy of the Uni-
versity Medical Center Utrecht, as part of prostate cancer
treatment planning. They were acquired on a Philips 3T
scanner (Gyroscan NT Intera, Philips Medical Systems, Best,
The Netherlands) using a balanced steady-state free precession
sequence with fat suppression. The scans had dimensions of
512 x 512 x 90 voxels of size 0.49 x 0.49 x 1.0 mm.

Fifty interpatient registrations were performed by registering
each MR scan with its predecessor in the 50-scan series. In-
terpatient registration of these scans is needed for atlas-based
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Fig. 3. Effect of the transformation model on the accuracy of registration, mea-
sured by the prostate overlap. Abbreviation BS-{sp) refers to a B-spline trans-
formation with control point spacing sp, in millimeters.

segmentation of the prostate [8]. The registration problem is
challenging, since the anatomical variability between subjects
is large. Also, the data suffer from several artefacts, as shown
in [8]. For our experiments we used the same settings as in [8],
with localized MI as a cost function (see Section II-C-4), and
a four-level Gaussian image pyramid with downsampling. The
following transformation models were compared: translation,
rigid, affine, and B-spline with different control point spacings:
64,32, 16, 8, and 4 mm. The result of the registration with trans-
lations was only used as an initialization for all other registra-
tions. For the B-spline registrations, the control point grid was
subjected to a multiresolution scheme: registration starts with a
coarse control point resolution; with less smooth versions of the
images, the control point resolution is increased accordingly.

For all images a manual segmentation of the prostate was
available, made by an experienced radiation oncologist. After
registration with elastix, the transformation Tiz was ap-
plied to the prostate segmentation of the moving image, using
transformix. The overlap with the segmentation of the
fixed image was computed, using the Dice similarity coefficient
(DSC) [60]:

21X NY|
DSC(X,Y) = ——— (5)
X+ 1Y
where X and Y represent the two segmentations, and | - | de-

notes the number of voxels within the segmentation. A DSC of
1 indicates a perfect alignment of the segmentation boundary.
A value of 0 means that the prostates had no overlap at all after
registration.

The results are presented in Fig. 3. For each transformation
model, the DSC values of the 50 MR scans were summarised
by a box-and-whiskers plot. A paired, two-sided Wilcoxon test
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Fig. 4. Effect of different sampling strategies on the smoothness of the cost function; a) translation in the z direction; b) translation in the z direction after

downsampling the MR image in the z direction; c) translation in the x direction.

was used to assess the median differences between adjacent
columns. A star on top of a column indicates a significant differ-
ence (p < 0.05) with respect to the previous column. The graph
clearly shows that a nonrigid registration was essential in this
application. The best results were obtained using a B-spline con-
trol point spacing of 8 mm. Refining the control point spacing to
4 mm yielded worse results due to a lack of regularization. The
transformation had too many degrees-of-freedom in this case,
which caused unrealistic deformations. The outlier with a very
low DSC value represents a case where the translation registra-
tion failed completely. The subsequent nonrigid registration was
not able to recover from this error. With the optimal setting of
8 mm, the computation time was around 15 min per registration
on a single processor Pentium 2.8-GHz personal computer.

B. Sampling Strategies

The grid effect is a well-known issue in image registration.
It refers to the problem that the cost function contains irregu-
larities at locations representing grid-aligning transformations,
which can impede the registration process. It has often been
studied in the context of interpolation artefacts [25]. In this sec-
tion it is demonstrated that the sampling mechanism can solve
this issue, by taking samples off the voxel grid, as suggested in
[57]1, [58].

Brain images were taken from the “retrospective image regis-
tration evaluation” (RIRE) project [27], which has ground truth
correspondences for the 8 corner points of the images. We in-
vestigated the registration of a T1-weighted MR image (moving
image) to a PET image (both of patient 001). The PET image
had a dimension of 128 x 128 x 15 voxels of size 2.59 X
2.59 x 8.0 mm. The MR image had a dimension of 256 X 256 X
26 voxels of size 1.25 x 1.25 x 4.0 mm.

The cost function (MI) was analysed using an exhaustive
search in a single translation direction, with a step size of
0.1 mm. Linear interpolation was used to compute Ips (T (x)).
Different sampling strategies were employed for computing the
cost function: all voxels, random sampling on the voxel grid,
and random sampling off the voxel grid.

In Fig. 4(a) the cost function —MI(T,; I, I/ ) is plotted as
a function of the translation £, the direction with the largest
voxel spacing. The two samplers that take samples on the voxel

grid have a very irregular cost function. The irregularities show
a pattern, related to the voxel sizes of the images in the z direc-
tion (8 mm for PET, 4 mm for MR). Every 8 mm a slice of the
PET image maps outside the MR image. This causes the large
discontinuities at ¢, = 12 mm and 20 mm for example. Every 4
mm, the cost function exhibits a small local maximum, caused
by the aligning voxel grids of the images. The random sampler
that takes samples off the grid clearly leads to a much smoother
cost function.

The experiment was repeated after downsampling the MR
image by a factor of 2 in the z direction. The slice distance of the
MR image thus became equal to that of the PET image (8§ mm).
Fig. 4(b) shows the cost function as a function of ¢ .. The irregu-
larities follow a single pattern in this graph, with a peak at every
8 mm.

Fig. 4(c) shows the result for translation in the = direction (ob-
tained using the original nondownsampled MR image). The por-
tion of voxels of the PET image that move simultaneously out-
side the MR image domain is smaller than in the z direction.
Consequently, the grid effect is reduced. The cost function ap-
pears much smoother, also for the two samplers that take samples
on the voxel grid, although small irregularities remain visible at
multiples of the voxel spacing. This example shows that, in prac-
tice, it may not always be strictly necessary to sample voxels off
the grid. The latter suggestion is confirmed by performing a full
rigid registration using the adaptive stochastic gradient descent
optimizationroutine [55] on six patients from the RIRE database.
The RIRE website reports mean errors of 2.71 and 2.78 mm for
random sampling on and off the grid, respectively.

C. Multiresolution Strategies

The influence of the choice of multiresolution strategy is ex-
amined in this section. CT chest scans of 26 patients were taken
from a lung cancer screening trial [61]. Each patient had a base-
line and a follow-up scan, acquired 3—9 months apart. The scans
were obtained at full inspiration and without contrast injection
on a 16-detector-row scanner (Mx8000 IDT or Brilliance 16P,
Philips Medical Systems, Best, The Netherlands). Images were
of size 512 x 512 pixels in-plane, with the pixel size ranging
from 0.55 x 0.55 mm to 0.8 x 0.8 mm. The number of slices
varied from 383 to 529, with slice thickness 1 mm and slice
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Fig. 5. Effect of the multiresolution strategy on registration accuracy, expressed as the mean distance between corresponding points. “R17-"R8” refer to the
number of image resolution levels that was used. The numbers on top of the graph refer to the number of outliers with mean distance larger than 5 mm.

spacing 0.7 mm. The images were downsampled by a factor of
two in each dimension before registration, in order to decrease
computational load.

For each patient the baseline and follow-up scans were
registered using a nonrigid B-spline transformation. An affine
registration was used for initialization. The registration was
performed with a Gaussian image pyramid (without downsam-
pling) using R € {1,...,8} levels. Two experiments were
performed for each value of R. Firstly, the resolution of the
B-spline control point grid was kept at a constant value of
12 mm (isotropic) in all resolutions. Secondly, the grid was
refined after each resolution, such that at the final resolution
the control points were spaced 12 mm apart again. This yields
16 experiments on 26 image pairs, resulting in a total of 416
registrations. For the cost function MI was used. The Rob-
bins—Monro stochastic optimization method was applied, using
1000 iterations per resolution level. The image sampler was
configured to select 2000 samples randomly in each iteration.

One hundred corresponding points in each baseline and
follow-up scan were established by two independent observers
using a semi-automatic algorithm [62]. The transformation T’
was applied to the annotated points in the fixed image using
transformix. To evaluate the registration accuracy, the
mean distance between the resulting locations and the reference
standard of the observer annotations was computed.

Fig. 5 shows box-and-whisker plots of the mean distance to
the annotations of one of the observers. The interobserver vari-
ability is shown in the left-most column. The first group R1-R8
displays the results without grid refinement. The second group
shows the results with grid refinement. When no grid refine-
ment was used, the registration quality improved until R = 3,
but deteriorated for R > 3. Apparently, the dense B-spline grid
yielded too much freedom on the heavily smoothed images.
With grid refinement the results kept improving with increasing
R up to R = 6 (note the decreasing number of outliers above 5
mm). In practice, when considering the computation time, three
or four resolutions with grid refinement seems to be a reason-
able choice. With these settings the runtime was about 10 min
on an AMD Opteron running at 2.4 GHz.

IV. GUIDELINES

To facilitate parameter file design for starting elastix-
users, this section provides some guidelines for choosing regis-
tration components and their configuration. It should be noted
that many settings are application-dependent, and therefore it
is not always possible to define proper default values.

As a starting point, default parameter files can be obtained
from the parameter file database. For each component in Fig. 1
we suggest the following rules of thumb:

Cost function: Mutual information performs well for a large
number of applications. Although sometimes (slightly)
better results can be obtained with NC or SSD for
monomodal image registration problems, MI can be con-
sidered a good default.

Transformation: Perform a rigid or affine registration prior to
a nonrigid one, for better initialization. The recommended
nonrigid transformation is the B-spline, because it is rel-
atively fast due to its compact support, and has some in-
herent smoothness due to its differentiability. The control
point grid spacing depends on the expected complexity of
the deformation. Start tuning with a relatively coarse grid.
The finer the grid, the more likely a regularization term
needs to be added to the cost function.

Optimization: The adaptive stochastic gradient descent
(ASGD) optimizer has good convergence properties and
is relatively fast in combination with a random sampling
strategy. Additionally, compared to a standard stochastic
gradient descent method, some difficult application-de-
pendent settings are estimated automatically [55].

Sampling strategies: Use a strategy that samples randomly,
either on or off the voxel grid, see also Section III-B.
Two thousand samples are usually enough for good per-
formance [24]. Additionally, the use of masks can be
important. Masks can be used to select a region of interest
or to avoid the undesired alignment of artificial edges in the
images (e.g. the cylindrical reconstruction field-of-view of
CT scanners, the conic beam edge in ultrasound images,
or image artifacts).
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Interpolation: A first order B-spline (linear) interpolator offers
a good trade-off between quality and computation time.

Hierarchical strategies: For the image data a Gaussian
pyramid with downsampling is recommended. When
sufficient computer memory is available the Gaussian
pyramid without downsampling sometimes offers better
results. For the nonrigid transformation model a multi-grid
approach is advised. By default the grid spacing is halved
every resolution level. Three or four resolutions are often
sufficient; use five or six for large images with substantial
deformations.

Once again we want to emphasise that the above rules are very

general and will not apply to every situation.

V. DISCUSSION

The three experiments presented in Section III are meant to
demonstrate the variety of comparative parameter investigations
that can be performed with elastix. Note that the conclu-
sions drawn could be different for different medical applica-
tions. For example, the optimum B-spline control point resolu-
tion of 8§ mm found in Section III-A can obviously not be gen-
eralized to other applications. On images with different char-
acteristics (modality, anatomical region), new optimal parame-
ters need to be determined. The elastix software is meant
to streamline this process. An important facilitator of this is
the parameter file database. Being a central storage place for
elastix parameter files, it allows researchers to reproduce ex-
periments published in literature with exactly the same settings
as used in the publication.

Several other software packages that perform image regis-
tration are available on the internet, for example: AIR,3 ART,*
ANTS,5, bUnwarpl,6 DROP,” FNIRT,® HAMMER,® IRTK,!0
and SPM.!! In [63] an evaluation framework for nonrigid
image registration is proposed and applied to 6 registration
methods, on intersubject MR brain data. The authors derive
several criteria, which can be used to evaluate and compare
(nonrigid) registration algorithms. More recently, a fairly
complete overview of image registration software is given in
[64], which compares the performance of 14 nonrigid reg-
istration programs on MR brain images. In that article, the
authors recommend, regarding software design, “where pos-
sible creating separable components for the similarity measure,
transformation model, regularization method, and optimization
strategy.” The modular design of elastix, which makes it
so suitable for comparative studies, distinguishes it from most
other available image registration packages. The two-layer
source code setup (see Section II-B) plays an important role in
this. Other discriminating features of elastix are 1) the large

3http://air.bmap.ucla.edu.

4http://www.nitrc.org/projects/art.
Shttp://picsl.upenn.edu/ANTS.
Shttp://biocomp.cnb.csic.es/~iarganda/bUnwarpJ.
Thttp://www.mrf-registration.net.
8http://www.fmrib.ox.ac.uk/fsl/fnirt.
%https://www.rad.upenn.edu/sbia/projects/3-D_hammer.html.
Ohttp://www.doc.ic.ac.uk/~dr/software.

Uhttp://www.fil.ion.ucl.ac.uk/spm.

choice of optimization methods, among others the efficient
stochastic optimization methods described in [24], [55], 2)
the various image sampling strategies, 3) the support for com-
bining multiple transformations by composition or summation,
and 4) the exhaustive possibilities for specifying any type of
hierarchical strategy. Comparing the performance of software
packages is not a trivial task, since each program has its own
set of user-defined parameters, which may heavily influence
the performance. Open challenges, such as recently organized
for liver segmentation [65] and coronary artery centerline
extraction [66], would be an interesting way to compare image
registration software.

Several functional extensions of the ela st ix package could
be imagined, but of highest interest would be the implementa-
tion of other nonrigid transformation models, besides the current
B-spline transformation and the physical model based splines.
Parameterized transformation models, such as described in [32],
[36], [37], are easiest to integrate in the scheme of Fig. 1. Non-
parametric registration methods, such as [34], [35], [38], [39],
would require some more effort, but several of these algorithms
have already been implemented in the ITK library (or in other
ITK-based registration software, such as ANTS), which simpli-
fies their integration in elastix.

VI. CONCLUSION

We have developed and presented a software package,
elastix, for medical image registration. Rather than imple-
menting a single registration method, elastix is a collection
of parametric intensity-based registration methods. Thanks to
the modular design, the user can easily construct a registration
algorithm, tailored to a specific application. Configuration
of the registration method can be accomplished by writing a
few lines in a parameter text file, without having to write any
programming code. elastix has a command-line interface,
which simplifies batch-processing of large numbers of data
sets. Registration of large 3-D images can be done efficiently,
thanks to the use of stochastic subsampling techniques.

The usage of elastix hasbeen illustrated with three experi-
ments. In the first experiment, eight transformation models were
compared for the interpatient registration of 50 MR prostate
scans. In the second experiment, we reproduced a result from
the literature, showing that the so-called grid effect can be re-
duced by sampling the fixed image off the voxel grid. The third
experiment demonstrated the importance of choosing a suit-
able hierarchical (multiresolution) strategy, by registering 26
chest CT image pairs with 16 different multiresolution configu-
rations. These three investigations are just a few examples of the
many possible comparative studies that one can perform with
elastix.

The software has been used in several research projects, in-
cluding [2], [8], [15], [24], [50], [55], [67]-[73], and is still
under active development. A complete list of references can be
found at http://elastix.isi.uu.nl/elastixpapers.php. Both the exe-
cutables and the source code are publicly available, which fits in
the current trend in medical imaging towards open source soft-
ware. The source code provides the users with the exact con-
struction of the available algorithms, and allows them to en-
hance the functionality of elastix by adding their own al-
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gorithms. These features make elastix a useful tool for re-
search on medical image registration.

APPENDIX
elastix USAGE EXAMPLE

elastix is a command-line program and therefore has no
graphical user interface. A list of all mandatory and optional
command line arguments can be generated by calling elastix
- -help. The most basic command to run a registration is as
follows:

elastix -f fix.ext -m mov.ext -out outDir -p
par.txt

Here, fix and mov are Ir and Iy, respectively, and ext is a
supported extension for image file formats. All output, e.g., log-
files, fiu, the deformed moving image In;(Tj(x)), is written in
the directory outDir. The parameter file par . txt specifies
which components are selected and what their parameters are.
A part of it could look like

(Metric “AdvancedMattesMutualInformation”)
(Optimizer “StandardGradientDescent”)
(Transform “EulerTransform”)

(NumberOfResolutions 3)

//Mutual information specific:
(NumberOfHistogramBins 32)
(FixedKernelBSplineOrder 1)
(MovingKernelBSplineOrder 3)

//Optimizer specific: stepsize ak =

a/(A +k + 1) alpha

(MaximumNumberOfIterations 300 300 600)
(SP_a 0.001)

(SP_alpha 0.602)

(SP_A 50.0)

For more detailed information about calling elastix and
the structure of the parameter file we refer to the manual,
Chapter 3 and Appendix A.
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