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1. Introduction

Medical image analysis (Duncan and Ayache, 2000; Paragios
et al., 2009) is an established domain in computational, mathemat-
ical and biological sciences. Recent advances on the acquisition
side have made possible the visualization of human tissues as well
as physiological and pathological indices related to them either
occasionally or periodically. The ability to compare or fuse infor-
mation across subjects with origins of different modalities is a crit-
ical and necessary component of computer aided diagnosis. The
term used often to express this need is registration.

The registration problem often involves three aspects: (i) the
transformation model, (ii) a similarity criterion and (iii) an optimi-
zation strategy.

Registration can be either global or local. Parametric models are
often employed to address global registration with a small number
of degrees of freedom, such as rigid or similarity. These models re-
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fer to a good compromise between performance and computa-
tional complexity. The registration problem in such a context is
well posed since the number of variables to be determined is
over-constrained from the number of observations. Dense image
registration aims to go further and seeks individual correspon-
dences between observations. The main goal is to determine rela-
tionships that locally express the correlation of the observations
either for the same subject (acquisitions of different modalities
or acquisitions of the same organ in time). Local alignment or
dense/deformable registration is the term often considered to de-
scribe this task.

Deformable registration is one of the most challenging prob-
lems in medical imaging. The problem consists of recovering a local
transformation that aligns two signals that have in general an un-
known relationship both in the spatial domain and in the intensity
domain. Several methods exist in the literature where specific
measures are designed to account for this relationship and to opti-
mize the transformation that brings these two signals together.

Local image alignment is often performed according to geomet-
ric or photometric criteria. Landmark-based methods (Hellier and
Barillot, 2003; Rohr et al., 2003) are a classic example of geomet-
ric-driven registration. In such a setting, a number of anatomical
key points (Pennec et al., 2000)/structures (segmented values)
are identified both in the source and in the target image, and a
transformation that aims to minimize the Euclidean distance
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between these structures is to be recovered. The main limitation of
these methods is related to the selection and extraction of land-
marks, while their main strength is the simplicity of the optimiza-
tion process.

Iconic registration methods (Cachier et al., 2003) seek for “visual”
correspondences between the source and the target image. Such a
problem is tractable when one seeks registration for images from
the same modality due to an explicit photometric correspondence
of the image intensities. Sum of squared differences, sum of absolute
differences, cross correlation (Hajnal et al., 2001) or distances on
subspaces that involve both appearance and geometry (intensities,
curvature and higher order image moments) (Davatzikos et al.,
1996) have been considered. On the other hand, it becomes more
challenging when seeking transformations between different
modalities with a non-linear or only statistical relation of intensities
(Hermosillo et al., 2002). The measures that have often been used
were normalized mutual information (Maes et al., 1997), Kullback-
Liebler divergence (Zollei et al., 2005) and correlation ratio (Roche
et al,, 1998) to define similarity' between different modalities.

Once the similarity measure has been defined the next task con-
sists of recovering the parameters that optimize the designed cost
function. Parameters can be either searched or estimated. In the
first case techniques like exhaustive search can be employed which
are time consuming. On the other hand, one can use known opti-
mization techniques, gradient-free or gradient-based to determine
the optimal set of parameters starting from an initial guess (Klein
et al., 2007). These methods require an important customization
from one application to another since a correlation exists between
the modalities/problem and the selection of the similarity mea-
sure. Furthermore, the optimization is often sub-optimal due the
non-convexity of the designed cost functions. In particular when
considering complex similarity functions defined on the continu-
ous space, then the numerical approximation of the gradient in
the discrete domain (image/volume plane) is very challenging
leading to erroneous registration results.

The aim of our approach is to overcome both limitations present
in all registration methods: dependency on the similarity measure
selectionand on the initial conditions in a reasonable computation
time.

In this article, we propose a novel technique that can be used
either for inter or intramodal image registration. Towards satisfy-
ing the smoothness of the deformation field and reducing the
dimensionality of the problem, we represent deformation through
free form deformations (Sederberg and Parry, 1986). Our method
reformulates registration as a Markov random field (MRF) optimi-
zation where a set of labels is associated with a set of deforma-
tions. Then we seek to attribute a label to each control point
such that once the corresponding deformation has been applied,
the similarity measure between the source and the target is opti-
mal for all voxels. The optimization procedure is independent from
the graph construction, and therefore any similarity measure can
be used.

The remainder of this paper is organized as follows: In Section
2, we introduce the proposed registration framework, while in Sec-
tion 3 we discuss the optimization aspects. Implementation details
are given in Section 4 and experimental validation are part of Sec-
tion 5. Section 6 concludes our paper.

2. Deformable registration
In order to introduce the concept of our approach (Glocker et al.,

2007), we consider (without the loss of generality) the 2D image

! For consistency reasons, we always use the term similarity measure, although
measures such as the sum of squared differences are actually dissimilarity measures.

domain. Let us consider a source f: @ =[1,N] x [1,M] — £ and a
target image g. In general, these images are related with a non-lin-
ear transformation as well as a non-linear relation between inten-
sities, that is

VXeQ gx) = hof(7(x), (1)

where 7 (x) is the transformation and h is a non-linear operator
explaining the changes of appearance between them. The most
common way to formulate the registration problem is through the
definition of a distance between the source and the target image
that is to be minimized in the entire domain @, or

Eans(7) = [ 1800~ hof(7 (x)[dx. 2

Recovering the optimal potential of this objective function is not
straightforward. In the case of 2D images, two variables are to be
determined while one constraint is available per pixel. The most ba-
sic approach to address this limitation is through the use of a regu-
larization function on the space of unknown variables (Tikhonov,
1992), or

Esmooth(y) :/Q¢IV5‘(X)|dx (3)

with ¢ being a convex function imposing smoothness on the defor-
mation field for neighboring pixels. Such a term will make the esti-
mation of the deformation field feasible assuming that the
relationship between the signal intensities is known. This hypothe-
sis is not realistic due to the fact that (i) when registering the same
modalities this relationship depends on the parameters of the scan-
ner which are not available and (ii) when registering different
modalities in most of the cases, such an operator does not exist.

In order to overcome this constraint, in the most general case a
similarity measure p is introduced to account for the intensity rela-
tion between the two images, or

Eqata(7) :/f;ph(g(x),f(ff(x)))dx- (4)

The definition of the p, depends on the nature of the observed sig-
nals as well as the application itself. Once this measure is defined,
the data term is combined with the smoothness one to determine
the objective/cost function under consideration. Gradient-descent
is the most common approach to perform the optimization, a meth-
od that has some strengths and known limitations. One can claim
that this approach is convenient and it is often straightforward to
implement. On the other hand, the problem is ill-posed due to the
fact that the number of constraints is inferior to the number of vari-
ables to be determined. Furthermore, since the cost function is non-
convex one cannot guarantee that the obtained solution will be the
optimal one. Last, but not least, gradient numerical manipulation is
not straightforward when projecting from the continuous space to
the discrete one.

The above observations lead to a natural conclusion that one
should seek (i) dimensionality reduction on the degrees of freedom
of the model, (ii) more efficient optimization techniques both in
terms of ability to approach the optimal solution with reasonable
computational cost, and (iii) techniques that do not require contin-
uous gradient manipulation in discrete spaces.

2.1. Continuous domain

Since we are interested in local registration, let us introduce a
deformation grid G:[1,K] x [1,L] (usually K< M and L < N)
superimposed onto the image (no particular assumption is made
on the grid resolution). The central idea of our approach is to de-
form the grid (with a 2D displacement vector d, for each control
point) such that the underlying image structures are perfectly
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aligned. One can assume that the transformation of an image pixel
X can be expressed using a linear or non-linear combination of the
grid points, or

T (X)=X+2(x) with 2

=> n(x-phd )

peG

where #(-) is the weighting function measuring the contribution of
the control point p to the displacement field 2. In such a theoretical
setting without the loss of generality, we consider free form defor-
mations (FFD) based on cubic B-Splines as a transformation model
(Sederberg and Parry, 1986). FFD are successfully applied in non-ri-
gid image registration (Loeckx et al., 2004; Rohlfing et al., 2003;
Rueckert et al., 1999; Schnabel et al., 2001). Deformation of an ob-
ject is achieved by manipulating an underlying mesh of uniformly
spaced control points. The displacement field for a two-dimensional
FFD based on cubic B-Splines at position x = (x,y) is defined as

3 3
=3 S BWBn(v)ditjim: (6)
=0 m=0
where i=|x/6] -1, Jj=1|y/d) -1, u=x/6x—|x/dx], and
v=y/é — /o], where B represents the Ith basis function of the
B-Spline, and o, =z, 6, =2 denote the control point spacing.

The three-dimensional ver51or1 is defined in a straightforward
manner.

In order to pose an optimization problem based on such a defor-
mation model, we also have to define a function which allows us to
project information from the image level to the level of control
points. This can be seen as a kind of inverse function of #(-), which
can be defined as

n(x —pJ)

Ton(y —phdy’ @

(X —pl) =
where 7(-) computes the influence of an image point X to a control
point p. This is very similar to the term that occurs also in gradient-
descent-based approaches where the force field based on the deriv-
atives of the similarity measure is also projected to the control
points. However, in our case we can simply plug in this term into
the criterion earlier introduced in (4), or

—lal Z /Q

peG

Edata 3“ (g(x)~f('aj-(x)))dx (8)

Such a term will guarantee photometric correspondence between
the two images where the similarity measure is evaluated on the
image level but represented on the level of control points. This is
an important definition for our framework since it allows us to re-
duce the dimensionality of the dense registration problem. Later,
we will see that this is exactly the data term used for optimization,
so no differentiation of the similarity measure has to be performed.

Obviously, the definition of our data term (8) is only valid for
point-wise similarity measures (e.g. sum of squared differences).
More complex and statistical measures (e.g. cross correlation or
mutual information) have to be computed slightly differently. First,
we define another version of 7 as

1, if y(jx—p[) >0
0 otherwise '

i(ix o) = { (©)
Basically, this will mask pixels influenced by a control point p
resulting in a local image patch centered at the control point. From
this patch, the similarity measure (e.g. cross correlation) is then
computed. This currently imposes some limitations on the resolu-
tions of the transformation grid, since too many grid points will re-
sult in too less samples in the local image patches. However, in our
experiments we show that in practice this effect does not play a
crucial role and statistical measures yield very good registration
results.

The transformation due to the interpolation inherits some im-
plicit smoothness properties. However, in order to achieve smooth
results also in texture-less or noisy regions, one can consider a
smoothness term on the grid domain, or

Esmooth 7 G Z ¢(|dep| (10)
el o
with ¢ being a smoothness penalty function for instance the L;-
norm. The complete term associated with the registration problem
is then defined as the sum of the data and smoothness term, or

Etotal = Edata + Esmooth~ (1 ])

The most common way to obtain the transformation parameters is
through the use of a gradient-descent method in an iterative
approach (Rueckert et al., 1999). Thus, given an initial guess, one
updates the estimate according to the following formula

gm=gm1_ Ot%] Such a process involves the derivative of

the energy term with respect to the transformation parameters
and therefore it is model and criterion dependent. Slight modifica-
tions of the cost function could lead to a different derivative and
could require novel numerical approximation methods.

2.2. Discrete domain

Let us now consider a discrete set of labels L = {I', ... I'} corre-
sponding to a quantized version of the deformation space
0= {dl, . 7di}. A label assignment I, to a grid node p is associated
with displacing the node by the corresponding vector d. If a label
is assigned to every node, we get a discrete labeling l. The displace-
ment field associated with a certain labeling 1 becomes

= " n(x - p)d"®. (12)

psG

2.2.1. Data term approximation

One can reformulate the registration as a discrete multi-label-
ing problem, which is assigned individual labels I, to the grid
nodes. A common model for representing such problems are Mar-
kov random fields (MRFs) (Geman and Geman, 1984; Li, 2001). The
general form of a first-order MRF is

Evre(1) = > Vo) + > >~ Vigllp, o), (13)

peG psG qe ' (p)

where V,(-) are the unary potentials representing the data term,
Vpq(+,-) are the pairwise potentials representing the smoothness
term, and ./ represents the neighborhood system of the nodes.
We define the unary potentials according to our data term as

Vp(lp) ~ / (X — 1) - (&%), F(7 (%)) dx, (14)

which can then be seen as local evaluations of the similarity mea-
sure. In general, the unary potentials are assumed to be indepen-
dent (Li, 2001) which is for our application in most of the cases
not true according to the influence function 5(-). Naturally, neigh-
boring control points influence in the overlapping areas of the dense
displacement field in a linear or non-linear manner. So, the poten-
tial local similarity caused by displacing a control point can only
be approximated. The actual similarity is first known after applying
the resulting labeling, i.e. a morphing of the source image. Our
approximation scheme for computing the values of Vy(l) is
sketched in pseudo-code in the following:

1. for each label x €L
2. for eachnode pe G

3. V(@) = [ (X = p]) - pn(@(x).f(x +d"))dx
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4. end
5. end

This scheme can be implemented very efficiently, since the
operations that have to be done on the source image f in line 3
are the same for all nodes and basically reduce to a simple transla-
tion of f by d”. The approximation error for the potential similarity
can be reduced by using only linear weighting functions in #(-)
(while keeping the cubic functions for the smooth transformation).
Additionally, the use of a multi-scale incremental approach of suc-
cessive morphings of the source towards the target image im-
proves the approximation over time.

2.2.2. Incremental approach and diffeomorphisms

The incremental approach has another advantage. The number
of labels and their capture range play a significant role to the reg-
istration process. It is clear that setting the number of labels to
infinity will converge to the continuous formulation which though
is intractable from computational perspective. On the other side, if
the set of labels is too small or misses important displacements,
then the registration process can yield poor results. Therefore, we
propose to perform several optimization cycles (while resetting the
control grid and composing the dense deformation fields on the
image level). After each cycle, the capture range covered by the la-
bel set is refined by a certain scaling factor which enables high
accuracy results while boosting the performance of the optimiza-
tion through small sets of labels. To this end, we can define a series
of cost functions where the data term is computed on

Vp(2) = /Qﬁ(\x— Pl) - pr(8(X).f(d" + 71 (x)))dx. (15)

Recently, one certain type of deformations gained quite a lot of
interest. In some applications, e.g. where the deformation field itself
is further analyzed or foldings have to avoided, it is desirable to ob-
tain smooth, invertible deformations called diffeomorphisms. Fol-
lowing Rueckert et al. (2006), it is very easy to guarantee
diffeomorphic deformations by hard constraints. Since the space
of solutions is controlled through the definition of the label set,
we can simply restrict the maximum displacement to be 0.4 times
the control point spacing (Choi and Lee, 2000). Thus, every morp-
hing will fulfill the diffeomorphic properties, and since we compose
the single morphings on the image level and the composition of two
diffeomorphisms produces a diffeomorphism, our final solutions are
diffeomorphisms as well.

2.2.3. Smoothness term

The next aspect to be addressed is the definition of the smooth-
ness term Vpq(-,-) in the label domain. A simple smoothness term
can be defined as a distance function computing the magnitude
of vector differences (Glocker et al., 2007), or

Vpa(lp, lq) = 7pg|d® — d"], (16)

where 4,q plays the role of a weighting factor which may vary over
the spatial domain. The value of the weighting factor depends on
the application and usually it has to be adapted according to the
similarity function. Other distance functions can be considered as
well, e.g. a quadratic term or truncated terms resulting in piecewise
smooth functions. Using the function in (16) as a smoothness term
for the registration problem results in a fluid-like registration
(Christensen, 1994). This is because only the incremental updates
of the deformation field are penalized. If we want to perform a full
regularization over time, then we also have to consider the defor-
mation field from the previous iterations within our distance func-
tion, or

Voa(lp. la) = Zpl(2(D) + d®) — (2(q) + d")], (17)

where #(-) projects the current displacement field on the level of
the control points, or

A(p) = / (X — P Z(X)dx. (18)

Such smoothness terms together with the data term allow convert-
ing the problem of image registration into the form of an MRF for-
mulation as defined in (13). MRFs have been very popular in the
area of computer vision (Geman and Geman, 1984) in the late eight-
ies and the early nineties. However, their main bottleneck at that
time was the lack of efficient optimization techniques to recover
their lowest potential. Deterministic and non-deterministic algo-
rithms have been considered to address this demand. Iterated con-
ditional modes (Besag, 1986) as well as highest confidence first
(Chou and Brown, 1990) are the most well-known deterministic
processes which often converge to a local minimum. On the other
hand, techniques such as simulated annealing (Kirkpatrick et al.,
1983) can in theory drive the solution to the optimal one; however,
in practice the process is rather complicated and increased atten-
tion has to be paid to the handling of the temperature decrease. This
constrain makes the use of annealing methods almost impractical.

The use of the max-flow/min-cut algorithm (Ford and Fulker-
son, 1962) and the proving of equivalence with certain MRFs are
the main reasons of the renaissance for the MRF framework (Li,
2001), in the late nineties. In particular, the graph-cut algorithm
(Boykov and Veksler, 2005), which refers to an efficient implemen-
tation of the max-flow/min-cut approach in regular image grids,
has boosted the attention of the vision community to MRFs. This
method can guarantee the global optimum or a good approxima-
tion of it (solving a succession of binary problems using the
alpha-expansion (Veksler, 1999) under certain conditions
(Kolmogorov and Zabih, 2004) which relates the solution with
the number of labels and the complexity of the pair/clique-wise
potentials. In practice the more complex the interaction terms
are, the more challenging the optimization of the objective func-
tion is in reasonable computational time. The use of metric or
sub-modular functions is the most common constraint related to
the definition of the pairwise potential function.

Dense registration is a problem which by default involves a
multi-label task while at the same time the regularization terms
are often non-linear functions (first- and second-order derivatives,
elastic models, etc.). Therefore, assuming that the pairwise poten-
tials are sub-modular functions is unrealistic. Furthermore, one
should expect that the level of resolution in the quantized search
space will depend on the position of the control point in the image
plane. In other words, in areas with strong image content like
edges and texture the matching process would be quite precise
which will not be the case in smooth areas. Last, but not least, gi-
ven the important number of the degrees of freedom, the method
should be computationally efficient. Due to the requirements on
the pairwise potentials, the use of methods such as alpha-expan-
sion is limited. In the following, a recently proposed MRF optimiza-
tion strategy based on the primal-dual principle is described. This
method provides the needed properties for efficiently solving the
problem of image registration within the discrete domain of MRFs.

3. MRF optimization based on linear programming

For optimizing the resulting MRF, we seek to assign a label [, € L
to each node p € G, so that the MRF energy in (13) is minimized.?
To this end, a recently proposed method, called Fast-PD, will be used
(Komodakis et al., 2007). This is an optimization technique, which

2 For similarity measures such as MI we can simply use —MI for the data term in
order to convert the problem into a minimization problem.
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Fig. 1. (a) By weak duality, the optimal cost ¢"x* will lie between the costs b"y and €' of any pair (x,y) of integral-primal and dual feasible solutions. Therefore, ifb"y and c'x
are close enough (e.g. their ratio r; is < f), so are ¢'x* and ¢'x (e.g. their ratio ¢ is < f as well), thus proving that x is an f~approximation to x*. (b) According to the primal-dual
schema, dual and integral-primal feasible solutions make local improvements to each other, until the final costs b"y, €™x' are close enough (e.g. their ratio is < f). We can then
apply the primal-dual principle (as in (a)) and thus conclude that x! is an f-approximation to x*.

builds upon principles drawn from the duality theory of linear pro-
gramming in order to efficiently derive almost optimal solutions for
a very wide class of NP-hard MRFs (Komodakis and Tziritas, 2007).
When applied to the image registration task, this technique thus of-
fers a series of important advantages compared to the state-of-the-
art (see Section 3.2).

For more details about the Fast-PD algorithm, the reader is re-
ferred to Komodakis and Tziritas (2007) and Komodakis et al.
(2007). Here, we will just provide a brief, high level description
of the basic driving force behind this algorithm. This driving force
will consist of the primal-dual schema, which is a well-known
technique in the linear programming literature.

3.1. The primal-dual schema for MRF optimization

To understand how the primal-dual schema works in general,
we will need to consider the following pair of primal and dual lin-
ear programs (LPs):

Dual : maxb'y
st.Aly<c’

Primal : min ¢"x

(19)
st.tAXx=b, x>0

Here, A represents a coefficient matrix, while b, c are coefficient
vectors. Also, X, y represent the vectors of primal and dual variables
respectively. We seek an optimal solution to the primal program,
but with the extra constraint of x being integral. Due to this inte-
grality requirement, this problem is in general NP-hard and so we
need to settle with estimating approximate solutions. A primal-
dual f~approximation algorithm achieves this by the use of the fol-
lowing principle (illustrated also in Fig. 1a):

Primal-dual principle 1 If x and y are integral-primal and dual
feasible solutions having a primal-dual gap less than f, i.e.:

dx<f-bly, (20)

then, X is an f~approximation to the optimal integral solution x*, i.e.
cx < cfx < f-cfxm.

Based on the above principle, which lies at the heart of any pri-
mal-dual technique, the following iterative schema can be used for
deriving an f-approximate solution (this schema is also illustrated
graphically in Fig. 1b):

Primal-dual schema 1 Keep generating the pairs of integral-pri-
mal, dual solutions {(x*,y*)},_,, until the elements X, y* of the last
pair are both feasible and have a primal-dual gap which is less
than f, i.e. condition (20) holds true.

In order to apply the above schema to MRF optimization, it suf-
fices that we cast the MRF optimization problem as an equivalent
integer program. To this end, the following integer programming
formulation of (13) has been used as the primal problem:

mind "> Vp(@)xp(@) + Y Y > Vg, f)Xpa(a, f) (21)

psG acl PG qe(p) afel

st. Y X =1 VpeG (22)

> Xpa(2.f) =xq(B) VPeEL, VpeGAqe.N(p) (23)
> Xpq(2,B) =Xp(x) Vael, VpeGAqe . (p) (24)
B

Xp(-), Xpll('v') € {071}

Here, in order to linearize the MRF energy, we have replaced the
discrete variables [, with the binary variables xp(-) and xpq(-, -). More
specifically, the {0,1}-variable xp(x) indicates that node p is as-
signed label « (i.e., [, = «), while the {0, 1}-variable Xpq(«, ) indi-
cates that vertices p,q are assigned labels «, 3, respectively (i.e.,
I, = o, lq = B). Furthermore, the constraints in (22) simply express
the fact that each node must receive exactly one label, while con-
straints (23) and (24) maintain consistency between variables
Xp(+), Xq(-) and variables xpq(,-), in the sense that if x,(e) = 1 and
Xq(B) = 1 hold true, then these constraints force xpq(o, §) = 1 to hold
true as well (as desired).

The linear programming relaxation of the above integer pro-
gram is then taken (by relaxing the binary constraints to
Xp(-) = 0, Xpq(-,-) = 0), and the dual of the resulting LP is used as
our dual problem. The fast-PD algorithm is then derived by apply-
ing the primal-dual schema to this pair of primal-dual LPs, while
using f = ngT3 as the approximation factor in (20).

3.2. Advantages of the primal-dual approach

Fast-PD has many nice properties, which makes it an excellent
candidate for our image registration task. In particular, it offers
the following advantages: (1) Generality: fast-PD can handle a
very wide class of MRFs, since it merely requires Vpyq(:,-) > 0.
Hence, by using fast-PD, our image registration framework can
automatically incorporate any similarity measure, as well as a
very wide class of smoothness penalty functions. (2) Optimality:
furthermore, fast-PD can always guarantee that the generated
solution will be an f-approximation to the true optimum (where
f= Z‘é"‘%). (3) Per-instance approximation factors: In fact, besides
the above worst-case approximation factor, fast-PD can also con-
tinuously update a per-instance approximation factor during its
execution. In practice, this factor drops to 1 very quickly, thus
allowing the global optimum to be found up to a user/application
bound. (4) Speed: finally, fast-PD provides great computational
efficiency, since it can reach an almost optimal solution very fast
and in an efficient manner.

4. Implementation details and parameter setting

In order to prove the concept of our framework, we imple-
mented a deformable registration application in C++. We follow
the widely used approach of multi-resolution registration in a
course-to-fine manner. The control grid is successively refined by

3 dimax = MaXy5Vpq(, ), dmin = MiNyesVpq (e, f).
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decreasing the grid point spacing by a factor of two while at the
same time we use a Gaussian pyramid for the image data. In most
applications three levels are sufficient. As mentioned before the
deformation grid is reset after each optimization cycle and the
resulting displacement fields are incrementally composed on the
image level (see also Section 2.2.2) Thus, we can do hierarchical
registration without using B-Spline refinement methods. The reso-
lution of the control grid highly depends on the application and is
to be specified by the user. If large deformations are expected, one
should also start with few control points. In general, we expect that
a global pre-registration has been performed ahead of our local
registration such that most of the global linear part (translation
and rotation) is removed from the images. Therefore, in many set-
tings a control grid resolution of 20 mm grid spacing and refine-
ments to 10 and 5 mm are sufficient as default parameters. These
should be changed according to specific problems. Running our
framework with a very coarse grid as a potential initialization step
efficiently removes global transformation parts such as anisotropic
scaling, translation, or shearing.

4.1. Definition of label sets

The next aspect and most crucial part for the registration accu-
racy is the configuration of the discrete set of displacements. Basi-
cally, four parameters are controlling the discretization of the
solution space. The first one defines the maximum allowed dis-
placement for each level of the multi-scale approach. In scenarios
where a diffeomorphic solution is desired, the maximum allowed
value of the parameter is bound to the grid resolution (see again
Section 2.2.2). Otherwise, the value can be freely set by the user.
Choices for an appropriate value are problem specific but not very
critical since the incremental approach can account for displace-
ments out of the capture range. Additionally, in our software the
capture range is visualized at every grid node such that the user
can control whether important deformations visible in the images
are covered.

The second parameter controls the sampling rate from the zero-
displacement up to the maximum displacement. This value is more
critical since it directly influences the number of total labels which
influences the computational speed of the approximation scheme
(see Section 2.2.1). Every additional label causes one extra outer-
loop for this scheme. Again, due to the scale-space approach and
the incremental morphings we can keep this value quite small.
The default value in our application is set to 5. One can imagine
an automatic selection of the scale through the local estimation
of max-min marginals of the objective function. In (Glocker et al.,
2008) a method that connects these marginals with the local
uncertanity of the solutions is proposed towards automatic aniso-
tropic local scale selection.

The third parameter concerns the selection of the type of sam-
pling. We distinguish between dense and sparse sampling of the
solution space. A dense sampling results in (2N -+ 1)° labels
(including the zero-displacement vector) where N is the sampling
rate and D the number of dimensions. Using the default sampling
rate of N = 5, this results in 121 labels for 2D and 1331 labels for
3D. The sparse sampling considers only displacements along the
main axis. Therefore, we get 4N + 1 labels for 2D and 6N + 1 labels
in 3D resulting in 21, respectively, 31 labels considering the default
sampling rate. The selection of the type of sampling is mainly a
compromise between the computational speed of one optimization
cycle (including the approximation scheme for the data term) and
the number cycles that have to be performed to converge to satis-
factory registration results. In 2D, we usually select the dense sam-
pling since additional outer-loops in the approximation scheme are
here not very expensive. In 3D, we normally use the sparse sam-
pling which gives very good results in practice while reducing

the computational time immensely, which is shown throughout
the experimental validation.

The fourth and last parameter concerning the capture space
controls the iterative refinement of the label sets. Since the fast-
PD optimization generates quasi-optimal labelings on the discrete
set of labels, usually no further improvement of the registration
can be achieved by keeping the same displacement set. A simple
scaling factor is multiplied with the initial maximum displacement
and the capture range is then resampled. This enables sub-pixel
precision on the solution space. By default we set the scaling factor
to 0.33 while performing five optimization cycles on each pyramid
level.

4.2. Similarity measure back-projection

Eq. (8) plays a key role in the derivation of our framework. On
the one hand, we need this formulation in order to determine
the local similarity measures on the control point level. On the
other hand, for the unary potential functions of the MRF formula-
tion this implies some problems when using cubic B-Splines in 7(-).
We mentioned before, that in general the unary potentials are
assumed to be independent, which leads us to our data term
approximation scheme. Since the overlapping areas/volumes with-
in the images are rather large for cubic functions, we avoid using
them for the data term computation. In practice, linear functions
are more appropriate to provide a good balance between speed
and accuracy. In all the following experiments, we use linear
weighting functions for determining the unary potentials. How-
ever, the dense deformation field is computed based on cubic
B-Splines in order to obtain smooth results.

5. Experiments on known and unknown deformations

Our framework currently contains a range of well-known simi-
larity measures, namely the sum of absolute differences (SAD), the
sum of squared differences (SSD), the normalized cross correlation
(NCC) (Hajnal et al., 2001), the normalized mutual information
(NMI) (Maes et al., 1997; Viola and Wells, 1997), the correlation
ratio (CR) (Roche et al., 1998), and a measure involving an inten-
sity-based and a geometric-based term which combines the sum
of absolute differences and image gradient inner product (SADGIP).
An additional weighting factor y is used to control the influence of
these two terms. The SADGIP is defined as

psacie(&(X),f(7 (X)) = (1 —)Ig(x) — f(7(x))|
y) VEX) V(7 ()
IVgx)| [VF(7 X))
Note that, by setting y = 1, this similarity measure might be also
used for multi-modal registration. The image gradients are com-
puted using a Sobel filter. We should also note that the NMI as well
as CR measures are based on simple histogramming techniques.
This will be changed in future implementations.

We evaluate our framework on several data sets. In general, the
evaluation and thus the validation of non-rigid image registration
methods is a difficult task. Usually, ground truth data for real
deformations - especially in medical applications - are not avail-
able. Therefore, we perform several experiments illustrating the
potentials of our approach. All our experiments are performed on
an Intel 2.16 GHz Mobile CPU.

+

(25)

5.1. Benchmark for similarity measures on synthetic deformations

The first experiment can be seen as a benchmark for similarity
measures. In order to evaluate the efficiency of different measures,
we test our method on simulated deformations where the ground
truth deformation field is known. Three different target images
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Fig. 2. Data for the first experiment. (a) The source image, and (b)-(d) generated target images with different degrees of deformation (denoted as Target A-C). (e) The inverse
squared source image used for multi-modal tests. (f)-(h) Deformation fields corresponding to the upper target images.

(A-C) are generated from the 2D MRI source image by randomly
displacing equally distributed landmarks within a range of —10
to 10 mm in both dimensions. The number of landmarks is varied
for the three targets in order to obtain the different degrees of
deformation. The warping is done using thin-plate splines (TPS)
with different regularization factors. The resulting targets are
shown in Fig. 2. Targets A, B, and C (Fig. 2b-d) are generated using
60, 30, and 15 mm spacing between the landmarks, respectively.
Before registration, we add uniformly distributed random noise
with mean 0 and variance 0.01 to the source images (relative to
the maximum and minimum intensity). For the multi-modal
experiment, we created a second source image with inverted
squared intensities. The resolution of the images is 256 x 256 with
an isotropic pixel spacing of 1 mm.

We perform the registration using the default parameters men-
tioned in Section 4. The smoothness factors 2,4 are set to the same
values for all control points. The values are empirically determined
according to the used similarity measure in order to achieve visu-
ally good results. For this experiment, we use the full regulariza-
tion over time defined in Eq. (17).

Additionally, we compare our results to an FFD-based registra-
tion framework called Elastix* (Klein et al., 2007). We run the gra-
dient-based registrations with two different optimizers, a standard
gradient-descent and a quasi-Newton optimizer using line search
strategies (Klein et al., 2007). The parameters of both methods are
tuned until we achieve visually good results. The number of itera-
tions for the three pyramid levels is set to 500, 250, and 100, respec-
tively. Elastix uses a random sample selection technique in order to
increase the computational efficiency. We set the number of samples
to 8000, which seems to be a good compromise between accuracy
and speed. In some cases where the registration fails, the number
of samples is increased to 16,000 resulting in an increased computa-
tional time. The general configuration for both methods is the same
as for our method: same number of pyramid levels, same grid reso-
lution, and the same transformation model based on cubic B-Splines.
Furthermore, in the case of NMI and CR implementation, 64 bins are
used for the histograms.

For the quantitative evaluation, two error metrics are consid-
ered, namely the angular error (AE) (Fleet, 1992) measured in de-

4 Elastix is available for download on http://www.isi.uu.nl/Elastix/.

grees and the magnitude of differences (MOD) measured in mm.
Thus, we can measure the deviation of the registration results com-
pared to the ground truth. The results for our method and the two
gradient-based approaches are presented in Table 1. Elastix pro-
vides three of our implemented similarity measures, the SSD,
NCC, and the NMI, where the latter one is based on Parzen win-
dowing (in contrast to our rather simple implementation of histo-
gramming). For SSD and NCC, our method performs best in almost
all cases both in accuracy and in speed. For NMI, the three ap-
proaches perform quite similar in accuracy while in some cases
the gradient-based approaches are slightly better while our meth-
od is always faster. However, since our results for NMI are only
based on a simple histogramming approach, the performance is
still remarkably good. The visual results for our NMI registration
are shown in Fig. 3. The combined measure using intensity and
geometrical information from image gradient performs much
worse than that reported in Glocker et al. (2007). This is mainly
due to the presence of noise in our experiments. Still, in some cases
the additional geometrical information can improve the perfor-
mance of the SAD measure while in other cases, where larger
deformations are present it even fails to converge to a satisfactory
registration. The use of the image gradients only (y = 1) in the case
of multi-modal registration seems to be not suitable, at least for
our experiments.

5.2. Inter Subject brain registration

In the next experiment, the registration accuracy will be
determined using manual segmentations. Eight MRI data sets of
the brain are registered where in all of them manual expert
segmentations of the gray and white matter are available. The
image resolution is 256 x 256 x 128 with a voxel spacing of
0.9375 x 0.9375 x 1.5 mm. The data are part of the Internet Brain
Segmentation Repository (IBSR) provided by the Center for Mor-
phometric Analysis at Massachusetts General Hospital (http://
www.cma.mgh.harvard.edu/ibsr/). The T1-weighted images have
been positionally normalized into the Talairach orientation (rota-
tion only). We select one data set as the template and register it
to the remaining seven data sets. The recovered transformation is
then used to warp the template segmentations. In order to com-
pare the warped segmentations to the manual ones, we determine
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Table 1
Quantitative results for the first experiment

Elastix (GD) Elastix (QN) Our method

AE MOD Time AE MOD T/Mf AE MOD Time
Target A Metric
SAD n/a n/a 2.25(1.98) 0.19 (0.14) 10
SSD 7.29 (15.97) 0.61 (1.80) 118 4.17 (4.46) 0.32 (0.32) 160 2.03 (1.73) 0.16 (0.12) 10
NCC 3.35 (3.69) 0.23 (0.20) 233 4.23 (4.17) 0.35 (0.37) 222 2.04 (1.94) 0.16(0.14) 12
SADGIP (y =0.1) n/a n/a 2.23(1.98) 0.18 (0.14) 35
SADGIP (y = 1.0) n/a n/a 5.26 (9.53) 0.38 (0.61) 27
NMI (Histo) n/a n/a 2.73 (2.57) 0.22 (0.20) 45
NMI (Parzen) 3.54 (7.39) 0.27 (0.51) 71 3.96 (7.01) 0.30 (0.42) 77 n/a
CR (Histo) n/a n/a 2.98 (3.17) 0.25 (0.24) 32
SADGIP (y = 1.0) n/a n/a 6.75 (14.64) 0.71 (1.79) 26
NMI (Histo) n/a n/a 2.10 (3.16) 0.14 (0.14) 46
NMI (Parzen) 1.79 (2.70) 0.11 (0.11) 71 3.02 (7.07) 0.18 (0.32) 124 n/a
CR (Histo) n/a n/a 2.66 (5.31) 0.16 (0.22) 30
Target B Metric
SAD n/a n/a 3.39 (4.75) 0.21 (0.19) 11
SSD 8.97 (19.18) 0.79 (2.27) 111 5.11 (6.75) 0.30 (0.29) 160 3.96 (7.61) 0.23 (0.29) 11
NCC 5.44 (8.16) 0.31 (0.33) 226 5.14 (6.00) 0.34 (0.38) 213 3.39 (4.67) 0.20 (0.18) 12
SADGIP (y =0.1) n/a n/a 3.56 (5.24) 0.22 (0.20) 38
SADGIP (y = 1.0) n/a n/a 5.90 (6.54) 0.42 (0.43) 27
NMI (Histo) n/a n/a 4.71 (7.47) 0.29 (0.38) 49
NMI (Parzen) 3.68 (5.69) 0.24 (0.30) 70 417 (5.55) 0.28 (0.37) 124 n/a
CR (Histo) n/a n/a 4.36(6.09) 0.27 (0.33) 30
SADGIP (y = 1.0) n/a n/a 8.97 (13.37) 0.64 (0.77) 27
NMI (Histo) n/a n/a 3.74 (9.21) 0.23 (0.49) 46
NMI (Parzen) 3.54 (7.95) 0.22 (0.44) 71 3.24 (7.23) 0.21 (0.42) 80 n/a
CR (Histo) n/a n/a 2.98 (5.50) 0.18 (0.22) 28
Target C Metric
SAD n/a n/a 5.73 (8.46) 0.32 (0.45) 11
SSD 9.55 (14.77) 0.79 (2.33) 115 6.32(6.06) 0.34 (0.33) 159 5.57 (7.65) 0.30 (0.38) 10
NCC 7.73 (7.47) 0.44 (0.42) 217 6.22 (5.94) 0.33 (0.32) 325 6.67 (7.62) 0.36 (0.43) 12
SADGIP (y =0.1) n/a n/a 4.87 (5.16) 0.26 (0.23) 39
SADGIP (y = 1.0) n/a n/a 15.99 (22.63) 0.99 (1.25) 21
NMI (Histo) n/a n/a 7.66(11.32) 0.41 (0.63) 48
NMI (Parzen) 7.57 (13.93) 0.39 (0.72) 70 7.95 (10.79) 0.47 (0.65) 59 n/a
CR (Histo) n/a n/a 6.82 (8.73) 0.35 (0.41) 36
SADGIP (y = 1.0) n/a n/a 7.98 (16.07) 0.41 (0.84) 27
NMI (Histo) n/a n/a 4,78 (10.11) 0.26 (0.62) 46
NMI (Parzen) 3.32 (5.80) 0.19 (0.37) 70 5.52 (10.80) 0.31 (0.63) 58 n/a
CR (Histo) n/a n/a 4.50 (9.38) 0.25 (0.60) 31

The last three rows in each table are the results for the multi-modal registration. We estimate the mean of the angular error (AE), the mean of the magnitude of differences
(MOD), and their respective standard deviations (printed in brackets). The registration time is given in s. Elastix (GD) and Elastix (QN) denote the gradient-based methods

using gradient-descent and quasi-Newton optimization.

three measures, namely DICE score, the sensitivity, and the speci-
ficity. The registration is performed using the NCC similarity mea-
sure and an incremental regularization as defined in Eq. (16). The
weighting factor 4,q is set to 0.005. We use four resolution levels,
starting with 40 mm control point spacing which is then refined
to 20, 10 and finally 5 mm. The label set scaling factor is set 0.75.
The rest of the parameters is set to the default values mentioned
in Section 4. A single registration takes about 8 min which splits
into approximately 7 min for the data term computation and 30 s
for the fast-PD optimizer plus some seconds for the intermediate
warpings.

We compare our results for the MRI brain registration with a 12
degree-of-freedom (DOF) affine registration (three rotations, three
translations, three scalings, and three shears) and the FFD-based
registration® proposed by Rueckert et al. (1999) and Schnabel
et al. (2001) which can be seen as the state of the art in FFD registra-
tion. Both methods use a standard gradient-descent optimizer, the
NCC similarity measure, and also a four-level resolution approach
where the grid resolution for the FFD-based registration is the same
as in our method. A single affine registration takes about 4 min
which is just the half of our deformable registration. The single gra-

5 Available on http://wwwhomes.doc.ic.ac.uk/~dr/software/.

dient-descent FFD registration takes more than 3 h and 50 min,
which is almost 30 times more than our method.

The quantitative results are presented in Table 2. Visual results
of the surface distance (SD) for the gray and white matter of one of
the data sets are shown in Fig. 4. The SD map is computed using the
tool® described in Gerig et al. (2001). Our method performs best for
all three measures while reducing the running time for the FFD reg-
istration compared with gradient-descent extremely. We should
note that all three methods start from the original images as initial-
ization. Neither our method nor Rueckert’s registration uses the af-
fine results as an initialization. Using the very coarse grid of
40 mm (7 x 7 x 6 grid) in the beginning of the deformable registra-
tion, we demonstrate that parts of the affine transformation (e.g.
anisotropic scaling) can be successfully recovered by FFD.

6. Discussion

In this paper, we have proposed a novel framework for deform-
able image registration that bridges the gap between continuous
deformations and optimal discrete optimization. Our method
reformulates registration using an MRF definition, and recovers

5 The tool Valmet is available on http://www.ia.unc.edu/dev/download/valmet/.


http://wwwhomes.doc.ic.ac.uk/
http://www.ia.unc.edu/dev/download/valmet/

B. Glocker et al./Medical Image Analysis 12 (2008) 731-741

739

Fig. 3. Exemplary visual results for the first experiments. (a)-(1) Visualization of the image alignment before and after registration using our method with normalized mutual
information based on histogramming. For the mono-modal experiment, the difference images are shown (contrast enhanced for print quality) and a checkerboard visual-

ization for the multi-modal registration. Note that in the latter case, dark areas of the source image should be aligned with bright areas of the target image.

Table 2
Results for the brain registration evaluated on manual segmentations of the gray and white matter

Affine 12-DOF (GD) Rueckert (GD) Our Method

DICE Sens Spec DICE Sens Spec DICE Sens Spec
Gray matter image
Brain 1 0.7022 0.7679 0.9633 0.8205 0.8547 0.9800 0.8567 0.8936 0.9831
Brain 2 0.7267 0.7236 0.9792 0.8142 0.8125 0.9857 0.8468 0.8489 0.9878
Brain 3 0.6687 0.6047 0.9816 0.8054 0.8059 0.9823 0.8332 0.8194 0.9867
Brain 4 0.7270 0.7924 0.9703 0.8154 0.8524 0.9818 0.8535 0.9065 0.9833
Brain 5 0.6977 0.7341 0.9686 0.8041 0.8449 0.9782 0.8355 0.8787 0.9809
Brain 6 0.7078 0.6328 0.9852 0.8116 0.7615 0.9891 0.8415 0.8112 0.9889
Brain 7 0.7062 0.6793 0.9779 0.8308 0.8303 0.9848 0.8591 0.8725 0.9857
Average 0.7052 0.7050 0.9752 0.8146 0.8232 0.9831 0.8466 0.8615 0.9852
Running time 4 min 3 h 50 min 8 min
White matter image
Brain 1 0.6484 0.6214 0.9842 0.7686 0.7296 0.9910 0.8344 0.7909 0.9944
Brain 2 0.6269 0.6335 0.9863 0.7225 0.6794 0.9929 0.7962 0.8031 0.9924
Brain 3 0.6097 0.5622 0.9887 0.7312 0.7212 0.9899 0.7855 0.7937 0.9909
Brain 4 0.6860 0.6881 0.9866 0.7879 0.8034 0.9900 0.8428 0.8195 0.9947
Brain 5 0.6372 0.6080 0.9853 0.7598 0.7231 0.9912 0.8329 0.8297 0.9921
Brain 6 0.6521 0.6477 0.9882 0.7338 0.8976 0.9808 0.7794 0.8659 0.9876
Brain 7 0.6430 0.5924 0.9884 0.7840 0.8102 0.9881 0.8262 0.8312 0.9916
Average 0.6433 0.6219 0.9868 0.7554 0.7664 0.9891 0.8139 0.8191 0.9920
Running time 4 min 3 h 50 min 8 min

The DICE score, the sensitivity, and the specificity are given. The running time states the time needed for a single registration. Rueckert (GD) denotes the method in Rueckert
et al. (1999) using a gradient-descent optimizer.

the optimal solution to the designed objective function through
efficient linear programming. Towards capturing important defor-
mations, we propose an incremental estimation of the deformation

component. These objectives are met through a discrete labeling
problem defined over an MRF graph. Graph edges introduce
smoothness on the deformation field, while the unary potentials
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Fig. 4. Color encoded visualization of the surface distance between warped and expert segmentation after affine (left), gradient-descent (middle), and our registration (right)
for the Brain 1 data set. The color range is scaled to a maximum and minimum distance of 3 mm. In some regions, the results of the gradient-descent approach seem to be
slightly better. However, the actual average surface distance (ASD) after registration for the gray matter is 1.66, 1.14, and 1.00 mm for affine, gradient-descent, and our
method, respectively. For the white matter, the resulting ASD is 1.92, 1.31, and 1.06 mm.

encode the image support for a given deformation hypothesis ver-
sus another. Therefore, the method is gradient-free meaning that
no computation of the derivative of the employed cost function
is needed; it can encode any similarity measure and can recover
the optimal solution up to a bound. We have demonstrated the im-
mense computational speedup provided by our framework. In
addition, we believe that the intuitive adjustment of the space of
solutions, which is directly related to the images to be registered,
is another advantage compared to the gradient-descent ap-
proaches where the user cannot easily control the search space.

In several applications, building anatomical atlases and models
of variations between training examples is feasible. In such a con-
text, one can consider a partial graph where connection hypotheses
are determined according to the density of expected deformations.
Such a direction will introduce prior knowledge in the registration
process and will make the optimization step more efficient. More-
over, the use of shape and appearance models can be considered
to perform segmentation through registration. Assuming a prior
model that involves both geometry and texture, and given a new
volume one can define/recover segmentation through the deforma-
tion of the model to the image that is a natural registration problem
which can be optimally addressed from the proposed framework. In
Glocker et al. (2007), preliminary but promising results on atlas-
based segmentation using our framework are presented.
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